Bildiğiniz gibi ifadeleri kuvvetlerle çarparken üsleri daima toplanır (a b *a c = a b+c). Bu matematik kanunu Arşimet tarafından türetildi ve daha sonra 8. yüzyılda matematikçi Virasen tamsayı üslerinden oluşan bir tablo oluşturdu. Logaritmanın daha fazla keşfedilmesine hizmet edenler onlardı. Bu işlevin kullanımına ilişkin örnekler, zahmetli çarpma işlemlerini basit toplama yoluyla basitleştirmeniz gereken hemen hemen her yerde bulunabilir. Bu makaleyi okumaya 10 dakikanızı ayırırsanız size logaritmanın ne olduğunu ve onlarla nasıl çalışılacağını açıklayacağız. Basit ve erişilebilir bir dille.

Matematikte tanım

Logaritma aşağıdaki formun bir ifadesidir: log a b=c, yani negatif olmayan herhangi bir sayının (yani herhangi bir pozitif) “b”nin “a” tabanına göre logaritması, “c” kuvveti olarak kabul edilir. ” sonuçta "b" değerini elde etmek için "a" tabanını yükseltmek gerekir. Logaritmayı örneklerle inceleyelim, diyelim ki log 2 8 ifadesi var. Cevap nasıl bulunur? Çok basit, öyle bir güç bulmanız gerekiyor ki 2'den gerekli güce 8 ulaşacaksınız. Kafanızda bazı hesaplamalar yaptıktan sonra 3 sayısını elde ediyoruz! Ve bu doğru çünkü 2 üssü 3 cevabı 8 olarak veriyor.

Logaritma türleri

Birçok öğrenci ve öğrenci için bu konu karmaşık ve anlaşılmaz görünüyor, ancak aslında logaritmalar o kadar da korkutucu değil, asıl önemli olan genel anlamlarını anlamak ve özelliklerini ve bazı kurallarını hatırlamaktır. Üç ayrı logaritmik ifade türü vardır:

  1. Doğal logaritma ln a, burada taban Euler sayısıdır (e = 2,7).
  2. Tabanı 10 olan ondalık a.
  3. Herhangi bir b sayısının a>1 tabanına göre logaritması.

Bunların her biri, logaritmik teoremler kullanılarak basitleştirme, indirgeme ve ardından tek bir logaritmaya indirgeme dahil olmak üzere standart bir şekilde çözülür. Logaritmaların doğru değerlerini elde etmek için, bunları çözerken özelliklerini ve eylem sırasını hatırlamanız gerekir.

Kurallar ve bazı kısıtlamalar

Matematikte aksiyom olarak kabul edilen, yani tartışmaya konu olmayan ve gerçek olan birçok kural-kısıtlama vardır. Örneğin sayılar sıfıra bölünemediği gibi kökünü çıkarmak da imkansızdır. çift ​​derece negatif sayılardan. Logaritmaların da kendi kuralları vardır; bunları takip ederek uzun ve kapsamlı logaritmik ifadelerle bile çalışmayı kolayca öğrenebilirsiniz:

  • "a" tabanı her zaman sıfırdan büyük olmalı ve 1'e eşit olmamalıdır, aksi takdirde ifade anlamını kaybeder, çünkü "1" ve "0" herhangi bir dereceye kadar her zaman değerlerine eşittir;
  • a > 0 ise a b >0 ise "c"nin de sıfırdan büyük olması gerektiği ortaya çıkar.

Logaritmalar nasıl çözülür?

Örneğin 10 x = 100 denkleminin cevabını bulma görevi veriliyor. Bu çok kolay, on sayısını artırarak 100'e ulaşacağımız bir kuvvet seçmeniz gerekiyor. Bu elbette 10 2 = 100.

Şimdi bu ifadeyi logaritmik formda gösterelim. Log 10 100 = 2 elde ederiz. Logaritmaları çözerken, belirli bir sayıyı elde etmek için logaritmanın tabanına girmenin gerekli olduğu gücü bulmak için tüm eylemler pratik olarak birleşir.

Bilinmeyen bir derecenin değerini doğru bir şekilde belirlemek için derece tablosuyla nasıl çalışılacağını öğrenmeniz gerekir. Şuna benziyor:

Gördüğünüz gibi, eğer teknik bir aklınız ve çarpım tablosu bilginiz varsa, bazı üsler sezgisel olarak tahmin edilebilir. Ancak için büyük değerler bir derece tablosuna ihtiyacınız olacak. Karmaşık konular hakkında hiçbir şey bilmeyenler tarafından bile kullanılabilir. matematik konuları. Sol sütun sayıları içerir (a tabanı), sayıların üst satırı a sayısının yükseltildiği c kuvvetinin değeridir. Kesişme noktasında hücreler cevap olan sayı değerlerini içerir (a c =b). Mesela 10 rakamının olduğu ilk hücreyi alıp karesini alalım, iki hücremizin kesişiminde gösterilen 100 değerini elde ederiz. Her şey o kadar basit ve kolaydır ki en gerçek hümanist bile anlayacaktır!

Denklemler ve eşitsizlikler

Belirli koşullar altında üssün logaritma olduğu ortaya çıktı. Bu nedenle herhangi bir matematiksel sayısal ifade logaritmik eşitlik olarak yazılabilir. Örneğin 3 4 =81, 81'in 3 tabanlı logaritması dörde eşit (log 3 81 = 4) olarak yazılabilir. Negatif kuvvetler için kurallar aynıdır: 2 -5 = 1/32 logaritma olarak yazarsak log 2 (1/32) = -5 elde ederiz. Matematiğin en büyüleyici bölümlerinden biri “logaritmalar” konusudur. Özelliklerini inceledikten hemen sonra aşağıdaki denklem örneklerine ve çözümlerine bakacağız. Şimdi eşitsizliklerin neye benzediğine ve onları denklemlerden nasıl ayıracağımıza bakalım.

Aşağıdaki biçimde bir ifade verildiğinde: log 2 (x-1) > 3 - bu logaritmik eşitsizlikÇünkü bilinmeyen değer "x" logaritmanın işareti altındadır. Ayrıca ifadede iki nicelik karşılaştırılır: İstenilen sayının iki tabanına göre logaritması üç sayısından büyüktür.

Logaritmik denklemler ve eşitsizlikler arasındaki en önemli fark, logaritmalı denklemlerin (örneğin, logaritma 2 x = √9) cevapta bir veya daha fazla spesifik sayısal değeri ima etmesi, bir eşitsizliği çözerken ise her iki kabul edilebilir değer aralığının da belirtilmesidir. değerler ve noktalar bu fonksiyon kırılarak belirlenir. Sonuç olarak cevap, bir denklemin cevabında olduğu gibi basit bir bireysel sayılar dizisi değil, sürekli bir dizi veya sayı dizisidir.

Logaritmalarla ilgili temel teoremler

Logaritmanın değerlerini bulma gibi ilkel görevleri çözerken özellikleri bilinmeyebilir. Ancak konu logaritmik denklemler veya eşitsizlikler olduğunda öncelikle logaritmanın tüm temel özelliklerini net bir şekilde anlamak ve pratikte uygulamak gerekir. Daha sonra denklem örneklerine bakacağız; önce her özelliğe daha ayrıntılı olarak bakalım.

  1. Ana kimlik şuna benzer: a logaB =B. Bu yalnızca a'nın 0'dan büyük olması, bire eşit olmaması ve B'nin sıfırdan büyük olması durumunda geçerlidir.
  2. Çarpımın logaritması şu formülle temsil edilebilir: log d (s 1 * s 2) = log d s 1 + log d s 2. Bu durumda zorunlu koşul şudur: d, s 1 ve s 2 > 0; a≠1. Bu logaritmik formülün ispatını örneklerle ve çözümle yapabilirsiniz. Log a s 1 = f 1 ve log a s 2 = f 2 olsun, sonra a f1 = s 1, a f2 = s 2 olsun. s 1 * s 2 = a f1 *a f2 = a f1+f2 sonucunu elde ederiz (özellikleri derece ) ve ardından tanım gereği: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, bunun kanıtlanması gerekiyordu.
  3. Bölümün logaritması şuna benzer: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Formül biçimindeki teorem şu biçimi alır: log a q b n = n/q log a b.

Bu formüle “logaritma derecesinin özelliği” denir. Sıradan derecelerin özelliklerine benzer ve bu şaşırtıcı değildir çünkü tüm matematik doğal önermelere dayanmaktadır. Kanıta bakalım.

Log a b = t olsun, a t =b olur. Her iki parçayı da m kuvvetine çıkarırsak: a tn = b n ;

ancak a tn = (a q) nt/q = b n olduğundan, log a q b n = (n*t)/t olduğundan, log a q b n = n/q log a b olur. Teorem kanıtlandı.

Sorun ve eşitsizlik örnekleri

Logaritmalarla ilgili en yaygın problem türleri denklem ve eşitsizlik örnekleridir. Neredeyse tüm problem kitaplarında bulunurlar ve aynı zamanda matematik sınavlarının da zorunlu bir parçasıdırlar. Üniversiteye kabul veya geçme için giriş sınavları matematikte bu tür problemlerin nasıl doğru şekilde çözüleceğini bilmeniz gerekir.

Ne yazık ki, logaritmanın bilinmeyen değerini çözmek ve belirlemek için tek bir plan veya şema yoktur, ancak her matematiksel eşitsizliğe veya logaritmik denkleme belirli kurallar uygulanabilir. Her şeyden önce, ifadenin basitleştirilip basitleştirilemeyeceğini veya sonuçlanabileceğini öğrenmelisiniz. genel görünüm. Uzun logaritmik ifadeleri, özelliklerini doğru kullanırsanız basitleştirebilirsiniz. Onları hızlıca tanıyalım.

Karar verirken logaritmik denklemler, ne tür bir logaritmaya sahip olduğumuzu belirlememiz gerekir: örnek bir ifade, doğal bir logaritma veya ondalık bir logaritma içerebilir.

İşte ln100, ln1026 örnekleri. Çözümleri, 10 tabanının sırasıyla 100 ve 1026'ya eşit olacağı gücü belirlemeleri gerektiği gerçeğine dayanıyor. Çözümler için doğal logaritmalar logaritmik kimlikleri veya özelliklerini uygulamanız gerekir. Çeşitli türlerdeki logaritmik problemleri çözme örneklerine bakalım.

Logaritma formülleri nasıl kullanılır: örnekler ve çözümlerle

Şimdi logaritmalarla ilgili temel teoremlerin kullanımına ilişkin örneklere bakalım.

  1. Bir ürünün logaritmasının özelliği, genişletilmesi gereken görevlerde kullanılabilir. büyük değer b sayılarını daha basit çarpanlara ayırın. Örneğin, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Cevap 9'dur.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - görebileceğiniz gibi, logaritmanın kuvvetinin dördüncü özelliğini kullanarak, görünüşte karmaşık ve çözülemez bir ifadeyi çözmeyi başardık. Tabanı çarpanlara ayırmanız ve ardından üslü değerleri logaritmanın işaretinden çıkarmanız yeterlidir.

Birleşik Devlet Sınavından Ödevler

Logaritmalara sıklıkla giriş sınavlarında, özellikle de Birleşik Devlet Sınavında birçok logaritmik problemle karşılaşılır ( devlet sınavı tüm okuldan ayrılanlar için). Genellikle bu görevler yalnızca A kısmında (sınavın en kolay test kısmı) değil, aynı zamanda C kısmında da (en karmaşık ve hacimli görevler) mevcuttur. Sınav, “Doğal logaritmalar” konusunda doğru ve mükemmel bilgi gerektirir.

Sorunlara örnekler ve çözümler Birleşik Devlet Sınavının resmi versiyonlarından alınmıştır. Bu tür görevlerin nasıl çözüldüğünü görelim.

Log 2 (2x-1) = 4 verildiğinde. Çözüm:
ifadeyi biraz basitleştirerek yeniden yazalım log 2 (2x-1) = 2 2, logaritmanın tanımından 2x-1 = 2 4, dolayısıyla 2x = 17 elde ederiz; x = 8,5.

  • Çözümün hantal ve kafa karıştırıcı olmaması için tüm logaritmaların aynı tabana indirilmesi en iyisidir.
  • Logaritmanın işaretinin altındaki tüm ifadeler pozitif olarak gösterilir, dolayısıyla logaritmanın işaretinin altında olan bir ifadenin tabanı çarpan olarak üssü çıkarıldığında logaritmanın altında kalan ifadenin pozitif olması gerekir.

Logaritmik ifadeler, çözüm örnekleri. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Devlet Sınavına gelince, logaritma denklemleri çözerken, uygulamalı problemlerde ve ayrıca fonksiyonların incelenmesiyle ilgili görevlerde kullanılır.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Çarpımın logaritması, faktörlerin logaritmasının toplamına eşittir.

* * *

*Bir bölümün (kesir) logaritması, faktörlerin logaritmaları arasındaki farka eşittir.

* * *

*Üssün logaritması üssün logaritması ile üssün çarpımına eşittir.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Bu özelliğin özü, pay paydaya aktarıldığında ve tam tersi durumda üssün işaretinin tersine değişmesidir. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan, size belirli bir beceri kazandıran iyi uygulamaya ihtiyacınız olmasıdır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmemişse, çözerken basit görevler Hata yapmak kolaydır.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların ne kadar “çirkin” çözüldüğünü mutlaka göstereceğim; bunlar Birleşik Devlet Sınavında görünmeyecek ama ilgi çekici, kaçırmayın!

Hepsi bu! Size iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Logaritmik denklem bilinmeyenin (x) ve onunla ifadelerin işaretinin altında olduğu bir denklemdir logaritmik fonksiyon. Logaritmik denklemleri çözmek, ve'ye zaten aşina olduğunuzu varsayar.
Logaritmik denklemler nasıl çözülür?

En basit denklem log a x = b a ve b bazı sayılar olmak üzere x bir bilinmeyendir.
Logaritmik bir denklemi çözme x = a b'dir: a > 0, a 1.

Eğer x, logaritmanın dışında bir yerdeyse, örneğin log 2 x = x-2, o zaman böyle bir denklemin zaten karma olarak adlandırıldığı ve onu çözmek için özel bir yaklaşıma ihtiyaç duyulduğu unutulmamalıdır.

İdeal durum, yalnızca sayıların logaritma işareti altında olduğu bir denklemle karşılaşmanızdır, örneğin x+2 = log 2 2. Burada bunu çözmek için logaritmanın özelliklerini bilmek yeterlidir. Ancak böyle bir şans çok sık olmaz, bu yüzden daha zor şeylere hazır olun.

Ama önce basit denklemlerle başlayalım. Bunları çözmek için en fazlasına sahip olmak arzu edilir. genel fikir Logaritma hakkında.

Basit logaritmik denklemleri çözme

Bunlar log 2 x = log 2 16 tipindeki denklemleri içerir. Çıplak göz, logaritmanın işaretini atlayarak x = 16 elde ettiğimizi görebilir.

Daha karmaşık bir logaritmik denklemi çözmek için, genellikle sıradan bir cebirsel denklemin çözümüne veya basit bir logaritmik denklem log a x = b'nin çözümüne indirgenir. En basit denklemlerde bu durum tek bir harekette gerçekleşir, bu yüzden bunlara en basit denir.

Yukarıdaki logaritmaları düşürme yöntemi, logaritmik denklemleri ve eşitsizlikleri çözmenin ana yollarından biridir. Matematikte bu işleme potansiyelleştirme denir. Bu tür işlemler için belirli kurallar veya kısıtlamalar vardır:

  • logaritmalar aynı sayısal tabanlara sahiptir
  • Denklemin her iki tarafındaki logaritmalar serbesttir, yani. herhangi bir katsayı veya diğer çeşitli ifadeler olmadan.

Diyelim ki denklemde log 2 x = 2log 2 (1 - x) potansiyelleştirme uygulanamaz - sağdaki katsayı 2 buna izin vermiyor. Aşağıdaki örnekte, log 2 x+log 2 (1 - x) = log 2 (1+x) de kısıtlamalardan birini karşılamıyor - solda iki logaritma var. Sadece bir tane olsaydı, tamamen farklı bir konu olurdu!

Genel olarak logaritmaları ancak denklem şu şekildeyse kaldırabilirsiniz:

log a (...) = log a (...)

Kesinlikle herhangi bir ifade parantez içine yerleştirilebilir; bunun potansiyelleştirme işlemi üzerinde kesinlikle hiçbir etkisi yoktur. Ve logaritmaları ortadan kaldırdıktan sonra, daha basit bir denklem kalacaktır - doğrusal, ikinci dereceden, üstel vb., umarım bunu nasıl çözeceğinizi zaten biliyorsunuzdur.

Başka bir örnek verelim:

log 3 (2x-5) = log 3 x

Potansiyelleştirme uygularsak şunu elde ederiz:

log 3 (2x-1) = 2

Logaritmanın tanımına dayanarak, yani logaritma, logaritma işaretinin altındaki bir ifadeyi elde etmek için tabanın yükseltilmesi gereken bir sayıdır; (4x-1), şunu elde ederiz:

Yine güzel bir cevap aldık. Burada logaritmaları ortadan kaldırmadan yaptık, ancak potansiyelleştirme burada da uygulanabilir, çünkü herhangi bir sayıdan ve tam olarak ihtiyacımız olan sayıdan bir logaritma yapılabilir. Bu yöntem logaritmik denklemlerin ve özellikle eşitsizliklerin çözümünde çok faydalıdır.

Logaritmik denklem log 3 (2x-1) = 2'yi potansiyasyon kullanarak çözelim:

2 sayısını logaritma olarak düşünelim, örneğin bu log 3 9, çünkü 3 2 =9.

Sonra log 3 (2x-1) = log 3 9 ve yine aynı denklemi 2x-1 = 9 elde ediyoruz. Umarım her şey açıktır.

Aslında çok önemli olan en basit logaritmik denklemlerin nasıl çözüleceğine baktık çünkü logaritmik denklemleri çözme En korkunç ve çarpık olanlar bile, sonunda her zaman en basit denklemleri çözmeye gelir.

Yukarıda yaptığımız her şeyde bir tanesini çok kaçırdık önemli nokta gelecekte belirleyici bir rol oynayacaktır. Gerçek şu ki, herhangi bir logaritmik denklemin çözümü, en temel olanı bile, iki eşit parçadan oluşur. Birincisi denklemin kendisinin çözümü, ikincisi ise izin verilen değerler aralığı (APV) ile çalışmaktır. Bu tam olarak ustalaştığımız ilk kısım. Yukarıdaki örneklerde ODZ cevabı hiçbir şekilde etkilemediği için dikkate almadık.

Başka bir örnek verelim:

günlük 3 (x 2 -3) = günlük 3 (2x)

Dıştan bakıldığında bu denklem, çok başarılı bir şekilde çözülebilen temel denklemden farklı değildir. Ancak bu tamamen doğru değil. Hayır, elbette çözeceğiz, ancak büyük olasılıkla yanlış çünkü hem C sınıfı öğrencilerin hem de mükemmel öğrencilerin hemen içine düştüğü küçük bir pusu içeriyor. Daha yakından bakalım.

Diyelim ki, eğer birkaç tane varsa, denklemin kökünü veya köklerin toplamını bulmanız gerekiyor:

günlük 3 (x 2 -3) = günlük 3 (2x)

Güçlendirme kullanıyoruz, burada kabul edilebilir. Sonuç olarak sıradan bir ikinci dereceden denklem elde ederiz.

Denklemin köklerini bulma:

İki kök ortaya çıktı.

Cevap: 3 ve -1

İlk bakışta her şey doğru. Ama sonucu kontrol edip orijinal denklemde yerine koyalım.

x 1 = 3 ile başlayalım:

günlük 3 6 = günlük 3 6

Kontrol başarılı oldu, artık sıra x 2 = -1:

günlük 3 (-2) = günlük 3 (-2)

Tamam, dur! Dışarıdan her şey mükemmel. Bir şey var ki, negatif sayıların logaritması yoktur! Bu, x = -1 kökünün denklemimizi çözmeye uygun olmadığı anlamına gelir. Dolayısıyla doğru cevap yazdığımız gibi 2 değil 3 olacaktır.

ODZ'nin unuttuğumuz ölümcül rolünü burada oynadı.

Kabul edilebilir değerler aralığının, izin verilen veya orijinal örnek için anlamlı olan x değerlerini içerdiğini hatırlatmama izin verin.

ODZ olmadan, herhangi bir denklemin herhangi bir çözümü, hatta kesinlikle doğru olanı bile piyangoya dönüşür - 50/50.

Görünüşte basit bir örneği çözerken nasıl yakalanabilirdik? Ama tam olarak potansiyelleşme anında. Logaritmalar ve onlarla birlikte tüm kısıtlamalar ortadan kalktı.

Bu durumda ne yapmalı? Logaritmaları ortadan kaldırmayı reddediyor musunuz? Ve bu denklemi çözmeyi tamamen reddediyor musunuz?

Hayır, biz sadece ünlü bir şarkının gerçek kahramanları gibi dolambaçlı yoldan gideceğiz!

Herhangi bir logaritmik denklemi çözmeye başlamadan önce ODZ'yi yazacağız. Ama bundan sonra denklemimizle gönlünüz ne istiyorsa onu yapabilirsiniz. Cevabı aldıktan sonra, ODZ'mize dahil olmayan kökleri atıyoruz ve son versiyonu yazıyoruz.

Şimdi ODZ’yi nasıl kaydedeceğimize karar verelim. Bunu yapmak için orijinal denklemi dikkatlice inceliyoruz ve x'e bölme, hatta kök vb. gibi şüpheli yerleri arıyoruz. Denklemi çözene kadar x'in neye eşit olduğunu bilmiyoruz, ancak değiştirildiğinde 0'a bölümü veya negatif bir sayının karekökünü veren x'lerin cevap olarak açıkça uygun olmadığından eminiz. . Bu nedenle, bu tür x kabul edilemez, geri kalanı ise ODZ'yi oluşturacaktır.

Aynı denklemi tekrar kullanalım:

günlük 3 (x 2 -3) = günlük 3 (2x)

günlük 3 (x 2 -3) = günlük 3 (2x)

Gördüğünüz gibi 0'a bölme yok. karekökler da yok ama logaritmanın gövdesinde x'li ifadeler var. Logaritmanın içindeki ifadenin her zaman >0 olması gerektiğini hemen hatırlayalım. Bu koşulu ODZ biçiminde yazıyoruz:

Onlar. Henüz hiçbir şeyi çözmedik ama sublogaritmik ifadenin tamamı için zorunlu bir koşulu zaten yazmıştık. Kıvrımlı parantez bu koşulların aynı anda doğru olması gerektiği anlamına gelir.

ODZ yazılmıştır, ancak ortaya çıkan eşitsizlik sistemini de çözmek gerekir, biz de bunu yapacağız. x > v3 cevabını alıyoruz. Artık hangi x'in bize uymayacağını kesin olarak biliyoruz. Daha sonra yukarıda yaptığımız gibi logaritmik denklemi çözmeye başlarız.

X 1 = 3 ve x 2 = -1 cevaplarını aldıktan sonra, yalnızca x1 = 3'ün bize uygun olduğunu görmek kolaydır ve bunu son cevap olarak yazıyoruz.

Gelecek için şunu hatırlamak çok önemlidir: herhangi bir logaritmik denklemi 2 aşamada çözeriz. Birincisi denklemin kendisini çözmek, ikincisi ise ODZ koşulunu çözmek. Her iki aşama da birbirinden bağımsız olarak gerçekleştirilir ve yalnızca cevap yazarken karşılaştırılır. gereksiz her şeyi atın ve doğru cevabı yazın.

Materyali güçlendirmek için videoyu izlemenizi şiddetle öneririz:

Video, günlüğü çözmenin diğer örneklerini gösterir. Denklemler ve aralık yönteminin pratikte çözümü.

Bu soruya, logaritmik denklemler nasıl çözülürŞimdilik bu kadar. Günlük tarafından bir şeye karar verilirse. Denklemler belirsiz veya anlaşılmaz kalıyorsa sorularınızı yorumlara yazın.

Not: Sosyal Eğitim Akademisi (ASE) yeni öğrenci kabulüne hazır.


Örnekler:

\(\log_(2)(⁡x) = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡((x^2-3))=\log_3⁡((2x))\)
\(\log_(x+1)((x^2+3x-7))=2\)
\(\lg^2⁡((x+1))+10=11 \lg⁡((x+1))\)

Logaritmik denklemler nasıl çözülür:

Logaritmik bir denklemi çözerken, onu \(\log_a⁡(f(x))=\log_a⁡(g(x))\) biçimine dönüştürmeye çalışmalı ve ardından \(f(x)'e geçiş yapmalısınız. )=g(x) \).

\(\log_a⁡(f(x))=\log_a⁡(g(x))\) \(⇒\) \(f(x)=g(x)\).


Örnek:\(\log_2⁡(x-2)=3\)

Çözüm:
\(\log_2⁡(x-2)=\log_2⁡8\)
\(x-2=8\)
\(x=10\)
Muayene:\(10>2\) - DL için uygun
Cevap:\(x=10\)

ODZ:
\(x-2>0\)
\(x>2\)

Çok önemli! Bu geçiş yalnızca aşağıdaki durumlarda yapılabilir:

Orijinal denklem için yazdınız ve sonunda bulunanların DL'ye dahil olup olmadığını kontrol edeceksiniz. Bu yapılmazsa fazladan kökler ortaya çıkabilir, bu da yanlış karar anlamına gelir.

Soldaki ve sağdaki sayı (veya ifade) aynıdır;

Sol ve sağdaki logaritmalar “saftır” yani çarpma, bölme vb. olmamalıdır. – Eşittir işaretinin her iki tarafında yalnızca tek logaritmalar.

Örneğin:

Denklem 3 ve 4'ün logaritmanın gerekli özelliklerini uygulayarak kolayca çözülebileceğini unutmayın.

Örnek . \(2\log_8⁡x=\log_8⁡2.5+\log_8⁡10\) denklemini çözün

Çözüm :

ODZ'yi yazalım: \(x>0\).

\(2\log_8⁡x=\log_8⁡2.5+\log_8⁡10\) ODZ: \(x>0\)

Logaritmanın önünde solda katsayı, sağda logaritmanın toplamı bulunur. Bu bizi rahatsız ediyor. Şu özelliğe göre ikisini \(x\) üssüne taşıyalım: \(n \log_b(⁡a)=\log_b⁡(a^n)\). Logaritmaların toplamını şu özelliğe göre bir logaritma olarak temsil edelim: \(\log_a⁡b+\log_a⁡c=\log_a(⁡bc)\)

\(\log_8⁡(x^2)=\log_8⁡25\)

Denklemi \(\log_a⁡(f(x))=\log_a⁡(g(x))\) formuna indirdik ve ODZ'yi yazdık, bu da \(f(x) formuna geçebileceğimiz anlamına geliyor =g(x)\ ).

İşe yaradı. Bunu çözüyoruz ve köklerini alıyoruz.

\(x_1=5\) \(x_2=-5\)

Köklerin ODZ'ye uygun olup olmadığını kontrol ediyoruz. Bunu yapmak için, \(x>0\) yerine \(x\) yerine \(5\) ve \(-5\) koyarız. Bu işlem ağızdan yapılabilir.

\(5>0\), \(-5>0\)

İlk eşitsizlik doğru, ikincisi değil. Bu, \(5\)'in denklemin kökü olduğu, ancak \(-5\)'nin olmadığı anlamına gelir. Cevabını yazıyoruz.

Cevap : \(5\)


Örnek : \(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\) denklemini çözün

Çözüm :

ODZ'yi yazalım: \(x>0\).

\(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\) ODZ: \(x>0\)

kullanılarak çözülen tipik bir denklem. \(\log_2⁡x\) öğesini \(t\) ile değiştirin.

\(t=\log_2⁡x\)

Her zamanki gibi aldık. Köklerini arıyoruz.

\(t_1=2\) \(t_2=1\)

Ters değiştirme yapma

\(\log_2(⁡x)=2\) \(\log_2(⁡x)=1\)

Sağ tarafları logaritma olarak temsil ederek dönüştürüyoruz: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) ve \(1=\log_2⁡2\)

\(\log_2(⁡x)=\log_2⁡4\) \(\log_2(⁡x)=\log_2⁡2 \)

Artık denklemlerimiz \(\log_a⁡(f(x))=\log_a⁡(g(x))\) şeklindedir ve \(f(x)=g(x)\)'e geçiş yapabiliriz.

\(x_1=4\) \(x_2=2\)

ODZ'nin köklerinin yazışmalarını kontrol ediyoruz. Bunu yapmak için, \(x\) yerine \(x>0\) eşitsizliğinde \(4\) ve \(2\)'yi değiştirin.

\(4>0\) \(2>0\)

Her iki eşitsizlik de doğrudur. Bu, hem \(4\) hem de \(2\)'nin denklemin kökleri olduğu anlamına gelir.

Cevap : \(4\); \(2\).

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. , yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüller nadiren geleneksel olarak bulunur. sayısal ifadeler. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 doğrudan sonuç tanımından.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

Yaygın logaritmalardan bazıları, tabanın on, üstel veya iki olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve iki tabanının bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya ters türev logaritması ilişkiyle belirlenir.

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için, sadece birkaç yaygın örnek vereceğim. okul müfredatı ve üniversiteler.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritmanın farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık bir ifade, bir dizi kural kullanılarak basitleştirilerek oluşturulur

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. Giriş seviyesi.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra, bilginizi eşit derecede önemli başka bir konuya, logaritmik eşitsizliklere genişleteceğiz...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. , yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Peki ya bunlar aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli olarak sorunlarla karşılaşıyorlar ve şaşırtıcı bir şekilde "ileri düzey" öğrenciler için bile sorunlar yaratıyorlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.