В современных промышленных процессах используют сильные кислоты, щелочи и даже плазму, а по новому методу американских ученых нужны только баллон ацетилена, баллон кислорода и искра.

Слева направо: Джастин Райт (Justin Wright), Крис Соренсен (Chris Sorensen), Арджин Непал (Arjun Nepal)

Графен - слой углерода толщиной в один атом - внезапно стал одним из самых желанных материалов в мире высоких технологий. Многими он воспринимается как панацея для решения проблем медицины и электроники. Считается, что с графеном батареи получат большую емкость, нейроинтерфейсы станут реальностью, а врачи научатся изготавливать уникальные протезы.

Сейчас производство графена в промышленных масштабах - очень энергозатратный, сложный и дорогой процесс. Это либо отшелушивание слоев, которое производится вручную в лабораториях и не может стать промышленным решением. Либо использование химии, катализаторов и нагрев до 1000 градусов Цельсия, что энергозатратно.

Чаще всего его получают из природного материала - пиролитического графита, который восстанавливают до чистого углерода, а затем механическими и химическими способами добиваются того, чтобы отдельные частицы графена были не толще нескольких слоев. В процессе производства используют сильные кислоты, щелочи, создают очень высокие температуры и давление. Поэтому важно появление дешевого способа получения этого материала.

Ученые из Университета штата Канзас заявили об открытии дешевого способа массового изготовления графена. Для этого необходимо лишь несколько доступных компонента: углеводородный газ, кислород, свеча зажигания и камера сгорания.

Для получения графена достаточно заполнить камеру сгорания ацетиленом или газообразным этиленом и кислородом, а затем при помощи автомобильной свечи зажигания вызвать детонацию смеси газов. При этом будет образован графен, который останется лишь собрать со стенок камеры сгорания. Таким образом, процесс получения графена заключается во взрыве материалов с высоким содержанием углерода.

Этот метод был открыт учеными совершенно случайно. Исследователи разрабатывали способ получения углеродистого аэрозольного геля. Для этого они применяли указанный выше процесс. После детонации образовывалась сажа, которая после изучения оказалась графеном. Ученые заявляют, что они не планировали получить этот материал, им просто повезло.

Новый способ изготовления графена обладает рядом преимуществ по сравнению с используемыми в настоящее время методами. Он не требует использования вредных химикатов и большого количества энергии. Также он позволяет производить графен в большом количестве и легко масштабировать производство. Наконец, этот способ более выгоден с экономической точки зрения.

Графен - это двумерная аллотропная модификация углерода, в которой все атомы уложены на плоскости в ряды правильных шестиугольников.

Впервые полученный в 2004 году, графен оказался крайне полезным материалом для электроники и энергетики. Он очень прочен, очень теплопроводен, а некоторые его свойства вообще уникальны: так, графен - материал с самой высокой подвижностью электронов из всех известных науке. Именно это его свойство сделало его необходимым в электронике, катализаторах, элементах питания и композитных материалах.

Подписывайтесь на Квибл в Viber и Telegram , чтобы быть в курсе самых интересных событий.

Изобретение может быть использовано при изготовлении электронных и оптоэлектронных устройств, а также солнечных батарей. Исходный графит диспергируют иглофрезерованием с получением продукта диспергирования, содержащего графен и графитовые элементы. Затем из полученного продукта диспергирования выделяют графен за счет использования его гидрофобных свойств, с применением жидкости, имеющей плотность 1,80-2,3 г/см 3 . После этого расщепляют графитовые элементы истиранием в барабане, содержащем истирающие элементы, выполненные в виде истирающих роликов, длина которых эквивалентна длине образующей барабана. Внутренняя поверхность барабана и поверхность роликов имеют шероховатость не более 0,32 мкм. Повышается производительность процесса получения графена, снижается вредность производства. 2 з.п. ф-лы, 1 пр.

Изобретение относится к области получения графена и, в частности, к способу получения графена в виде пленок, наноразмерных частиц, хлопьев и т.п. из исходных материалов на основе графита и других слоистых графитовых соединений.

Графен, представляющий собой слой углерода, атомы которого соединены sp 2 связями в гексагональную двухмерную решетку, является одним из самых прочных материалов, известных на сегодняшний день. Структуры графена могут быть образованны из нескольких наложенных друг на друга листов графита, так называемые, «малослойные графены», и более толстые структуры, названные "наноразмерными графеновыми пластинами". Каждый из этих материалов существенно отличается друг от друга по физико-механическим характеристикам и может быть использован в различных областях техники, в частности, в электронных устройствах, солнечных батареях, оптоэлектронных устройствах и др.

В настоящее время графен получают несколькими способами:

Разрушением (расщеплением) графита путем его химического интеркалирования соединениями галогенов, солями металлов и др. с последующим воздействием тепловым ударом, ультразвуком, механической обработкой сдвига. (KR №20110089625, В82В 3/00, 2011 г.; KR №20100116399, В82В 3/00, 2010 г.; US №2005271574, С01В 31/00 2005 г.; US №2009026086, B82Y 30/00, 2009 г.; US №2009155578, B82Y 30/00, 2009 г.; US №3885007, С04В 35/536 2005 г.). Способы, описанные в патентах, сложны, малопроизводительны, вредны с точки зрения использования химических веществ, высоких температур и давлений, требуют использования сложного оборудования: ультразвуковых установок, суперцентрифуг.

Получение графена через окисленный графит путем обработки графита сильными кислотами с последующим восстановлением окисленного графита сильными восстановителями - гидрозином, NaBH 4 , гидрохиноном и др. (US 2013197256, кл. В82В 3/00, 2013 г. US №20100303706, B82Y 30/00, 2010 г.).

Эти способы связаны с использованием сильных кислот и большим количеством воды, которая необходима для отмывки непрореагировавших продуктов и нейтрализации суспензии.

С учетом недостатков вышеуказанные известные способы могут быть ограниченно использованы в промышленном производств. Кроме того, графен, получаемый этими способами, имеет дефектную кристаллическую структуру, которая снижает показатели материала по электро- и теплопроводности, износостойкости и др. характеристикам.

Наиболее перспективными способами получения графена для промышленного производства являются способы получения графена путем микромеханического отшелушивания слоев графита.

Одним из первых методов механического отшелушивания является метод Новоселова (метод скотча). Метод, с виду кажущийся простым, на самом деле на сегодняшний день является трудно воспроизводимым и позволяет получать лишь очень небольшие (не более 0,001 мг) количества графена, и требует применения специальных графитов - природного, высокоориентированного пиролитического графита марки ВОПГ (Губин СП., Ткачев СВ. «Графен и родственные наноформы углерода», М., Книжный дом «Либроком», 2012 г., с. 38-39).

Известен способ получения графена, включающий размалывание графита в графитовый порошок в шаровой мельнице в присутствии органического растворителя с поверхностным натяжением 30-45 мНм -1 и мелющих шариков, покрытых мягким полимером. Полимерное покрытие на шариках уменьшает повреждение в графите кристаллической структуры от жестких столкновений с помольными шариками. Размалывание в шаровой мельнице значительно повышает производительность получения графена, графеновый продукт может быть получен равномерной толщины в 1-2 атомов углеродного слоя, способ может быть просто реализован в промышленном производстве (WO 2011054305, С01В 31/04, 2011 г.). Однако данный способ переизмельчает фрагменты получаемого графена, т.к. шарики в большей степени работают по принципу размола исходного материала.

Известен способ отшелушивания слоистого материала, включающий диспергирование графита в жидкой среде, содержащей поверхностно-активное вещество, воздействие на указанную взвесь или суспензию ультразвуком на энергетическом уровне в течение периода времени, достаточного для получения разделенных наноразмерных чешуек. Обработка ультразвуком сопровождается механической обработкой сдвига, например размолом воздухом, в шаровой мельнице, вращающейся лопастью сдвига, или их комбинацией (US 2008279756, С01В 31/04, 2008 г.). Недостаток способа заключается в неконтролируемом помоле материала практически во всем объеме, последующее выделение графена из раствора, содержащего поверхностно-активные вещества, является чрезвычайно трудоемкой операцией, и, кроме того, использование ультразвука в производстве является вредным.

Известен способ получения графеновых частиц или хлопьев путем истирания твердого графита по грубой шероховатой поверхности, например по стеклянной поверхности, имеющей шероховатость от 0,01 до 10 pm. При трении происходит перенос графита на шероховатую поверхность с оставлением следов, которые представляют собой графеновый материал. Указанную поверхность затем подвергают обработке ультразвуком для отделения от нее графенового материала (WO 2011055039, кл. B82Y 30/00, 2011 г.). Недостаток способа заключается в его малой производительности, т.к. способ требует постоянного прерывания процесса для отделения слоев графена с поверхности истирания для восстановления шероховатости и продолжения процесса истирания твердого графита.

Известен способ получения графеновых частиц, включающий диспергирование исходного графитового материала путем вырезания графитовых блоков, имеющих наноразмеры, из исходного графита ультрамикротомом; в качестве инструмента используют алмазный нож с радиусом закругления кромки от 1 до 5 нм, при этом блоки вырезают отдельными проходами резца в двух взаимно пересекающихся направлениях. После вырезания блоков осуществляют их расщепление на множество графеновых частиц с использованием, кислот хлорсульфоновой, серной или их смеси. При диспергировании графеновых элементов в жидкости их отделение от жидкости осуществляют фильтрацией (US 2012272868, B82Y 30/00, 2012 г.).

Недостаток способа заключается в малой производительности процесса, связанной с тем, что для получения требуемого количества блоков одним резцом необходимо сделать множество проходов. Кроме того, получение графена известным способом является вредным производством, т.к. последующее расщепление блоков на графеновые элементы осуществляется сильнымии кислотами. Способ достаточно дорогостоящ из-за высокой стоимости микротомных алмазных резцов, резание которыми должно осуществляться на прецицзионном дорогостоящем оборудовании.

Наиболее близким техническим решением к заявленному способу является способ, включающий диспергирование исходного графитового материала иглофрезерованием с получением продукта, содержащего графен и графитовые элементы, и выделение графена из полученного продукта центрифугированием в жидкости, способствующим расслоению продукта на графит и графен (заявка CN №102602914, С01В 31/04, 2012 г.). В соответствии с заявкой после отделения графена остаются графитовые элементы. Авторы заявки не указывают на возможное дальнейшее использование графитовых элементов.

Технической задачей предложенного способа является создание простого недорогого высокопроизводительного способа получения графена с повышенным выходом с помощью высокопроизводительных механических средств без использования сложного инструмента и оборудования.

Техническое решение поставленной задачи заключается в том, что в способе получения графена, включающем диспергирование исходного графита иглофрезерованием с получением продукта диспергирования, содержащего графен, и графитовые элементы, и выделение графена из полученного продукта диспергирования, после выделения графена из продукта диспергирования осуществляют расщепление графитовых элементов истиранием в барабане, содержащем истирающие элементы, выполненные в виде истирающих роликов, при этом отделение графена из продуктов диспергирования проводят за счет использования гидрофобных свойств графена с применением жидкости, имеющей плотность 1,80-2,3 г/см 3 .

Длина истирающих роликов эквивалентна длине образующей барабана.

Внутренняя поверхность барабана и поверхность роликов имеют шероховатость не более 0,32 мкм.

Сущность изобретения заключается в том, что процесс диспергирования исходного графитового материала осуществляют многолезвийным инструментом - иглофрезой, которая имеет множество режущих кромок, позволяющих за один проход инструмента получить большое количество продукта диспергирования, содержащего графен и графитовые элементы. После выделения полученного при иглофрезеровании графена производят расщепление графитовых элементов в барабане в режиме истирания-перекатывания истирающих элементов, выполненных в виде роликов. Процесс расщепления истиранием-перекатыванием позволяет получать графен в виде достаточно больших элементов, практически полностью исключив дробление графена.

Способ осуществляют следующим образом.

В качестве источника графита могут быть использованы такие материалы, как природный графит, электродный графит, пиролитический графит, ВОПГ, КИШ и др., которые представляют собой материал, состоящий из множества ориентированных друг относительно друга слоев углерода. Исходный графитовый материал диспергируют процессом иглофрезерования. Иглофреза представляет собой диск, на периферии которого закреплено большое число плотно расположенных режущих элементов в идее игл или проволочек из высокопрочного стального материала. Каждая игла или проволочка одновременно снимает стружку с поверхности графитового материала. В зависимости от условий иглофрезерования получают стружку - продукт диспергирования, представляющий собой смесь графена и графитовых элементов. Условиями иглофрезерования являются режимы резания, количество режущих элементов на единице рабочей поверхности иглофрезы, жесткость режущих элементов, зависящая от модуля упругости материалов, из которых сделаны режущие элементы, геометрические параметры: диаметр режущих элементов, их вылет над поверхностью закрепления, плотность размещения режущих элементов и др. Варьированием условиями иглофрезерования можно получать графен и графитовые элементы тех размеров, которые необходимы. Для получения размерных графитовых элементов рекомендуются следующие режимы резания: скорость резания - до 35 м/с, поперечная подача ≤0,03 м/с, продольная подача - 0-1 м/мин. Более жесткие режимы резания вызывают высокие температуры в зоне резания, приводящие к окислению продуктов диспергирования.

Иглофрезерование проводят преимущественно на шлифовальных станках, обеспечивающих высокие скорости резания. В процессе иглофрезерования получают графен, который отделяют от графитовых элементов. Отделение графена необходимо для того, чтобы полученный графен не подвергался последующей обработке, приводящей к повреждению кристаллической решетки, а также возможному передрабливанию. В конечном итоге выделение графена позволяет увеличить выход графена с минимально поврежденной кристаллической решеткой.

Отделение графена от продуктов диспергирования проводят за счет использования гидрофобных свойств графена с применением жидкости, имеющей плотность 1,80-2,3 г/см 3 .

За счет кристалличности графен обладает гидрофобными свойствами, которые позволяют ему всплывать в жидкостях с плотностью выше плотности графена. Для выделения графена из продуктов диспергирования готовят суспензию из воды и вещества, растворяющегося в воде и повышающего ее плотность в пределах 1,80-2,3 г/см 3 . Преимущественно, в качестве таких веществ могут быть использованы соли такие как, например NaCl, NaNO 3 KaCl и др. В суспензию вводят продукт иглофрезерования, взбалтывают ее и оставляют на некоторое время в покое до появления границы раздела жидкость - осадок. Всплывший графен в виде пленки, графеновых фрагментов, снимают с поверхности суспензии. Плотность суспензии более 1,80 г/см 3 позволяет всплывать графену, отделяя его от гафитового материала, обладающего большей плотностью и гидрофильными свойствами. При меньшей плотности суспензии продукт диспергирования не всплывает и не разделяется, Максимальная плотность суспензии определяется плотностью графита. При плотности суспензии больше 2,3 г/см 3 продукт диспергирования не разделяется, т.к. всплывают на поверхность и графен, и графит.

После отделения графена осевший осадок, содержащий графитовые элементы, декантируют от жидкости, высушивают и помещают в барабан, в котором в качестве истирающих элементов служат ролики. Внутренняя поверхность барабана и поверхность роликов должна иметь шероховатость не более 0,32 мкм. Такая шероховатость обеспечивает производительное получение 1-3 - слойного графена. При большей шероховатости получается многослойный графен с худшими физико-механическими свойствами.

Длина истирающих роликов должна быть эквивалентна длине образующей барабана. При этом будет осуществляться более равномерное перекатывание-скольжение роликов по стенке барабана и роликов друг по другу. При процессе обработки в барабане в режиме перекатывания-скольжения происходит истирание графитовых элементов, вызывающее расщепление графита на графеновые фрагменты без их передрабливания. Количество истирающих роликов, загружаемых в барабан, должно составлять не более трети диаметра барабана.

Соразмерность длины роликов и длины образующей барабана необходима для получения плотной упаковки роликов по стенке барабана, при которой происходит процесс истирания. Нарушение плотности упаковки роликов приводит к появлению ударных нагрузок, т.е. к появлению графена с искаженной кристаллической решеткой.

После завершения обработки графитового материала в барабане из полученного продукта вновь готовят суспензию для отделения графеновых фрагментов. В зависимости от результатов осадок в суспензии может многократно подвергаться обработке в барабане с промежуточным отделением графеновых фрагментов от продукта очередного истирания.

Графитовые электроды марки Э диаметром 16 мм подвергали резанию иглофрезой ⌀120 мм, шириной 20 мм при скорости резания V=25 м/с, продолной подаче S прод =0,5 м/мин, поперечной подаче S поп =1,0 мм/ход. в закрытом контейнере без охлаждения. Полученный продукт фрезерования помещали в суспензию, состоящую из поваренной соли и дистиллированной воды. Плотность суспензии составляла 2,0 г/см 3 . Суспензию взбалтывали в течение 30 мин и оставляли в покое до получения границы раздела жидкость - осадок. Всплывший продукт снимали с поверхности жидкости. Продукт представлял собой графен в виде пленки, фрагментов, отдельных элементов. Выход графена составил 11% вес. Осевший продукт декантировали, высушивали и помещали в барабан с роликовыми истирающими элементами. Внутренний диаметр барабана составлял 240 мм, диметр роликов - 12 мм. Длина барабана составляла 360 мм, длина роликов 12 мм. Загрузка роликами составляла треть диаметра барабана. Внутренняя поверхность барабана и поверхность роликов имели шероховатость 0,32 мкм. Скорость вращения барабана 200 об/мин, время обработки - 5 час.

После истирания полученный продукт вновь обрабатывали в суспензии для выделения графена. Снятый продукт в виде пленки высушивали и взвешивали. Выход графена составил 14% вес. За цикл было получено 25% вес. графена.

Оставшийся осадок после декантирования и высушивания направлялся на дополнительное истирание в барабане.

Таким образом, благодаря использованию процесса иглофрезерования для получения графена и последующего расщепления графитовых элементов в барабане с истирающими роликами, повышается выход графена, снижается стоимость процесса. Способ осуществляется без использования сильных кислот, что существенно снижает вредность производства.

1. Способ получения графена, включающий диспергирование исходного графита иглофрезерованием с получением продукта диспергирования, содержащего графен и графитовые элементы, и выделение графена из полученного продукта диспергирования, отличающийся тем, что после выделения графена из продукта диспергирования осуществляют расщепление графитовых элементов истиранием в барабане, содержащем истирающие элементы, выполненные в виде истирающих роликов, при этом отделение графена из продуктов диспергирования проводят за счет использования гидрофобных свойств графена с применением жидкости, имеющей плотность 1,80-2,3 г/см 3 .

2. Способ по п. 1, отличающийся тем, что длина истирающих роликов эквивалентна длине образующей барабана.

3. Способ по п. 1, отличающийся тем, что внутренняя поверхность барабана и поверхность роликов имеют шероховатость не более 0,32 мкм.

Похожие патенты:

Изобретение относится к области создания и производства углеродных материалов с высокими физико-механическими характеристиками, в частности углерод-углеродных композиционных материалов на основе тканых армирующих наполнителей из углеродного высокомодульного волокна и углеродной матрицы, сформированной из пеков в процессе карбонизации и последующих высокотемпературных обработок.

Изобретение может быть использовано при изготовлении конструкционных материалов. Способ пакетировки углеродных обожженных крупногабаритных заготовок мелкозернистого графита изостатического прессования при графитации включает их расположение вертикально и горизонтально поперек керна в столбиках, отделенных друг от друга слоями керновой пересыпки толщиной приблизительно 0,2 диаметра заготовки.

Изобретение может быть использовано для изготовления терморасширенного графита (ТРГ) и огнезащитных материалов. Исходный порошкообразный графит обрабатывают окислительным раствором, содержащим следующие компоненты в соотношении, г/г графита: серная кислота 2,0-5,0; азотнокислый аммоний 0,04-0,15; карбамид 0,04-0,15.

Изобретение может быть использовано в медицине, биологии и сельском хозяйстве в качестве химических контейнеров для хранения и транспортировки веществ. Графит фторируют фторокислителями - трифторидом хлора или брома в растворителе, инертном к указанным фторокислителям, в качестве которого используют тетрахлорид углерода или фреон.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении катализаторов и сорбентов. Графеновая пемза состоит из графенов, расположенных параллельно на расстояниях больше 0,335 нм, и аморфного углерода в качестве связующего по их краям, при соотношении графена и связующего от 1:0,1 до 1:1 по массе.

Группа изобретений может быть использована при изготовлении материалов для электротехнической и химической промышленности. Графитсодержащий компонент смешивают с наполнителем на основе каолина, проводят сухое перемешивание с одновременным диспергированием последовательно в барабанном и центробежном смесителях.

Изобретение относится к углерод-карбидокремниевым композиционным материалам. Технический результат изобретения заключается в повышении эксплуатационных характеристик изделий.

Волокна графена под сканирующим электронным микроскопом. Чистый графен восстановлен из оксида графена (GO) в микроволновой печи. Масштаб 40 мкм (слева) и 10 мкм (справа). Фото: Jieun Yang, Damien Voiry, Jacob Kupferberg / Rutgers University

Графен - 2D-модификация углерода, образованная слоем толщиной в один атом углерода. Материал обладает высокой прочностью, высокой теплопроводностью и уникальными физико-химическими свойствами. Он демонстрирует максимальную подвижность электронов среди всех известных материалов на Земле. Это делает графен практически идеальным материалом в самых различных приложениях, в том числе в электронике, катализаторах, элементах питания, композитных материалах и т.д. Дело за малым - научиться получать качественные слои графена в промышленных масштабах.

Химики из Ратгерского университета (США) нашли простой и быстрый метод производства высококачественного графена путём обработки оксида графена в обычной микроволновой печи . Метод на удивление примитивный и эффективный.

Оксид графита - соединение углерода, водорода и кислорода в различных соотношениях, которое образуется при обработке графита сильными окислителями. Чтобы избавиться от оставшегося кислорода в оксиде графита, а затем получить чистый графен в двумерных листах, нужно приложить значительные усилия.

Оксид графита смешивают с сильными щелочами и ещё дальше восстанавливают материал. В результате получаются мономолекулярные листы с остатками кислорода. Эти листы принято называть оксидом графена (GO). Химики испробовали разные способы удаления лишнего кислорода из GO ( , , , ), но восстановленный такими способами GO (rGO) остаётся сильно неупорядоченным материалом, который далёк по своим свойствам от настоящего чистого графена, полученного методом химического осаждения из газовой фазы (ХОГФ или CVD).

Даже в неупорядоченной форме rGO потенциально может быть полезен для энергоносителей ( , , , , ) и катализаторов ( , , , ), но для извлечения максимальной выгоды от уникальных свойств графена в электронике нужно научиться получать чистый качественный графен из GO.

Химики из Ратгерского университета предлагают простой и быстрый способ восстановления GO до чистого графена, используя 1-2-секундные импульсы микроволнового излучения. Как видно на графиках, графен, полученный «микроволновым восстановлением» (MW-rGO) по своим свойствам намного ближе к чистейшему графену, полученному с помощью ХОГФ.


Физические характеристики MW-rGO, по сравнению с нетронутым оксидом графена GO, восстановленным оксидом графена rGO и графеном, полученным методом химического осаждения из газовой фазы (CVD). Показаны типичные хлопья GO, осаждённые на кремниевую подложку (А); рентгеновская фотоэлектронная спектроскопия (B); рамановская спектроскопия и соотношение размера кристаллов (L a) к отношению пиков l 2D /l G в рамановском спектре для MW-rGO, GO и ХОГФ (CVD).


Электронные и электрокаталитические свойства MW-rGO, по сравнению с rGO. Иллюстрации: Rutgers University

Техпроцесс получения MW-rGO состоит из нескольких этапов.

  1. Окисление графита модифицированным методом Хаммерса и растворение его до однослойных хлопьев оксида графена в воде.
  2. Отжиг GO, чтобы материал стал более восприимчив к микроволновому облучению.
  3. Облучение хлопьев GO в обычной микроволновой печи мощностью 1000 Вт на 1-2 секунды. Во время этой процедуры GO быстро нагревается до высокой температуры, происходит десорбция кислородных групп и великолепная структуризация углеродной решётки.
Съёмка просвечивающим электронным микроскопом показывает, что после обработки СВЧ-излучателем образуется высокоупорядоченная структура, в которой кислородные функциональные группы практически полностью уничтожены.


На изображениях с просвечивающего электронного микроскопа показана структура листов графена со шкалой 1 нм. Слева - однослойный rGO, на котором много дефектов, в том числе функциональные группы кислорода (синяя стрелка) и дыры в углеродном слое (красная стрелка). По центру и справа - отлично структурированный двуслойный и трёхслойный MW-rGO. Фото: Rutgers University

Великолепные структурные свойства MW-rGO при использовании в полевых транзисторах позволяют увеличить максимальную подвижность электронов примерно до 1500 см 2 /В·с, что сравнимо с выдающимися характеристиками современных транзисторов с высокой подвижностью электронов.

Кроме электроники, MW-rGO пригодится в производстве катализаторов: он показал исключительно маленькое значение коэффициента Тафеля при использовании в качестве катализатора при реакции выделения кислорода: примерно 38 мВ на декаду. Катализатор на MW-rGO также сохранил стабильность в реакции выделения водорода, которая продолжалась более 100 часов.

Всё это предполагает отличный потенциал для использования восстановленного в микроволновом излучении графена в промышленности.

Научная статья "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide" опубликована 1 сентября 2016 года в журнале Science (doi: 10.1126/science.aah3398).

Графен — самый тонкий материал, известный человечеству, толщиной всего в один атом углерода. Он вошел в учебники по физике и в нашу реальность в 2004 году, когда исследователи из Манчестерского университета Андре Гейм и Константин Новоселов сумели его получить, используя обычную ленту-скотч для последовательного отделения слоев от обычного кристаллического графита, знакомого нам в виде карандашного стержня (см. Приложение). Замечателен тот факт, что графеновый лист, помещенный на подложку из оксидированного кремния, можно рассмотреть в хороший оптический микроскоп. И это при его толщине всего в несколько ангстрем (1Å = 10 -10 м)!

Популярность графена среди исследователей и инженеров растет день ото дня, поскольку он обладает необычными оптическими, электрическими,механическими и термическими свойствами. Многие эксперты предсказывают в недалеком будущем возможную замену кремниевых транзисторов более экономичными и быстродействующими графеновыми.

Итак, как же изготовить графен в домашних условиях?

  1. Для создания и наблюдения самого тонкого материала на нашей планете вам понадобятся чистые условия (например, физико-химическая лаборатория, хотя подойдет и обычная комната с хорошей вентиляцией), чистые руки, желательно в перчатках, и чистые помыслы ☺.
  2. Сначала подготовьте подложку, на которую вы будете помещать графен для наблюдения в микроскопе. Для этого нужно взять кремниевую подложку с естественным оксидом на поверхности, которую перед исследованием следует очистить. Лучше всего для этого подойдет раствор соляной кислоты и перекиси водорода в соотношении 1:3. Поместите пластину в раствор на 30 секунд, а затем просушите сжатым азотом.
  3. Приложите отслоенный кусочек графита к ленте-скотч, используя пинцет. Аккуратно сложите ленту пополам, накрыв графит липкой стороной. Несильно прижмите ленту к графиту с обеих сторон и неторопливо раскройте скотч, чтобы можно было наблюдать расслоение графита на две части.
  4. Повторите предыдущий этап раз десять. Чем тоньше будут становиться слои графита, тем сложнее будет это делать.
  5. Очень осторожно поместите ленту-скотч с графитом на поверхность кремниевой подложки. Используя пластиковый пинцет, удалите воздушные пузырьки между лентой и подложкой. Пройдитесь по поверхности образца пинцетом, несильно его придавливая к подложке в течение десяти минут. Затем очень медленно снимите ленту, придерживая подложку.
  6. Поместите ваш образец под 50-, а лучше 100-кратную линзу микроскопа. Вы увидите множество графитовых «чешуек» разных размеров и формы, переливающихся всеми цветами радуги. Если вам повезет, вы заметите графен: почти прозрачную, кристаллической формы «чешуйку», бесцветность которой будет сильно отличаться от ярких цветов «толстых» графитовых собратьев.
  7. А вот ссылка. где российский ученый, нобелевский лауреат Константин Новоселов показывает как получить графен в домашних условиях самому

До прошлого года единственным известным науке способом производства графена было нанесение на клейкую ленту тончайшего слоя графита с последующим удалением основы. Эта техника получила название «техники скотча». Однако недавно ученые обнаружили, что существует более эффективный способ получения нового материала: в качестве основы они стали использовать слой меди, никеля или кремния, который затем удаляется вытравливанием (рис.2). Таким способом, прямоугольные листы из графена шириной 76 сантиметров создала команда учёных из Кореи, Японии и Сингапура. Мало того что исследователи поставили своеобразный рекорд по размерам куска однослойной структуры из атомов углерода, так они ещё и создали на основе гибких листов чувствительные экраны.

Рисунок 2: Получение графена методом вытравливания

Впервые графеновые «хлопья» были получены физиками лишь в 2004 году, тогда их размер составил всего лишь 10 микрометров. Год назад команда Родни Руоффа из Техасского университета в Остине рассказала о том, что им удалось создать сантиметровые «обрывки» графена.

Руофф и его коллеги нанесли углеродные атомы на медную фольгу при помощи метода химического осаждения из пара (CVD). Исследователи лаборатории профессора Бюня Хее Хона из университета Сункхюнкхвана пошли дальше и увеличили листы до размеров полноценного экрана. Новая «рулонная» технология (roll-to-roll processing) позволяет получать из графена длинную ленту (рис. 3).

Рисунок 3: Изображение нанесённых друг на друга слоёв графена, полученное при помощи просвечивающей электронной микроскопии высокого разрешения.

Поверх графеновых листов физики поместили слой адгезивного полимера, растворили медные подложки, затем отделили полимерную плёнку – получился единичный слой графена. Чтобы придать листам большую прочность, учёные тем же способом «нарастили» ещё три слоя графена. В конце полученный «бутерброд» обработали азотной кислотой – для улучшения проводимости. Новенький лист графена помещается на подложку из полиэстера и проходит между нагретыми валиками (рис. 4).

Рисунок 4: Рулонная технология получения графена

Образовавшаяся структура пропускала 90% света и обладала электрическим сопротивлением меньшим, чем у стандартного, но по-прежнему очень дорогого прозрачного проводника – оксида индия и олова (ITO). Кстати, использовав листы графена в качестве основы сенсорных дисплеев, исследователи обнаружили, что их структура ещё и менее хрупкая.

Правда, несмотря на все достижения, до коммерциализации технологии ещё очень далеко. Прозрачные плёнки из углеродных нанотрубок пытаются вытеснить ITO уже довольно давно, но производители никак не могут справиться с проблемой «мёртвых пикселей», которые появляются на дефектах плёнки.

Применение графенов в электротехнике и электронике

Яркость пикселей в плоскопанельных экранах определяется напряжением между двумя электродами, один из которых обращен к зрителю (рис.5). Эти электроды обязательно должны быть прозрачными. В настоящее время для производства прозрачных электродов применяется оксид индия, легированный оловом (ITO), но ITO является дорогостоящим и не самым устойчивым веществом. К тому же мир вскоре исчерпает свои запасы индия. Графен является более прозрачным и более устойчивым, чем ITO, и уже был продемонстрирован ЖК-дисплей с графеновым электродом.

Рисунок 5: Яркость графеновых экранов в зависимости от подаваемого напряжения

Большой потенциал у материала и в других областях электроники. В апреле 2008 года ученые из Манчестера продемонстрировали самый крохотный в мире графеновый транзистор. Идеально правильный слой графена управляет сопротивлением материала, превращая его в диэлектрик. Становится возможным создание микроскопического переключателя питания скоростного нано-транзистора для контроля движения отдельных электронов. Чем меньше транзисторы в микропроцессорах, тем быстрее он сам, и ученые надеются, что графеновые транзисторы в компьютерах будущего станут размером с молекулу, учитывая, что современные кремниевые технологии производства микротранзисторов практически достигли предела своих возможностей.

Графен не только отличный проводник электричества. У него высочайшая теплопроводность: колебания атомов легко распространяются по углеродной сетке ячеистой структуры. Тепловыделение в электронике - серьезная проблема, поскольку существуют пределы высоких температур, которые электроника способна выдержать. Однако ученые из университета штата Иллинойс обнаружили, что транзисторы, в которых используется графен, обладают интересным свойством. В них проявляется термоэлектрический эффект, приводящий к понижению температуры прибора. Это может означать, что электроника, построенная на применении графена, оставит в прошлом радиаторы и вентиляторы. Таким образом, привлекательность графена в качестве перспективного материала для микросхем будущего дополнительно возрастает (рис.6).

Рисунок 6: Щуп атомно-силового микроскопа, сканирующий поверхность графеново-металлического контакта с целью измерения температуры.

Ученым было непросто измерить теплопроводность графена. Они изобрели совершенно новый способ измерения его температуры, расположив пленку из графена длиной в 3 мкм над точно таким же крохотным отверстием в кристалле диоксида кремния. Затем пленку нагрели лазерным лучом, заставив ее вибрировать. Эти вибрации помогли рассчитать температуру и теплопроводность.

Изобретательность ученых не знает границ, если речь идет об использовании феноменальных свойств нового вещества. В августе 2007 года был создан самый чувствительный из всех возможных датчиков на его основе. Он способен отреагировать на одну молекулу газа, что поможет своевременно обнаружить наличие токсинов или взрывчатых веществ. Чужеродные молекулы мирно опускаются в графеновую сеть, выбивая из нее электроны либо добавляя их. В результате меняется электрическое сопротивление графенового слоя, которое и измеряется учеными. Даже самые маленькие молекулы задерживаются прочной графеновой сеткой. В сентябре 2008 года ученые из Корнельского университета в США продемонстрировали, как графеновая мембрана, подобно тончайшему воздушному шару, надувается за счет разницы давлений в несколько атмосфер по обеим ее сторонам. Эта особенность графена может быть полезной при определении протекания различных химических реакций и вообще при изучении поведения атомов и молекул.

Получать большие листы чистого графена пока еще очень сложно, но задачу можно упростить, если слой углерода смешать с другими элементами. В Северо-Западном университете США графит окислили и растворили в воде. Результатом стал бумагоподобный материал - графеноксидная бумага (рис.7). Она очень жесткая и довольно проста в изготовлении. Графеноксид пригоден в качестве прочной мембраны в аккумуляторах и топливных элементах.

Рисунок 7: Графеноксидная бумага

Мембрана из графена - идеальная подложка для объектов изучения под электронным микроскопом. Безупречные ячейки сливаются на изображениях в однородный серый фон, на котором четко выделяются другие атомы. До сих пор было практически невозможно различить в электронном микроскопе легчайшие атомы, но с графеном в качестве подложки можно будет разглядеть даже малые атомы водорода.

Возможности применения графена можно перечислять до бесконечности. Недавно физики Северо-Западного университета США выяснили, что графен можно смешивать с пластиком. Результат - тонкий суперпрочный материал, выдерживающий высокие температуры и непроницаемый для газов и жидкостей.

Сфера его применения - производство легких автозаправочных станций, запчастей для автомобилей и самолетов, прочных лопастей ветровых турбин. В пластик можно упаковывать пищевые продукты, надолго сохраняя их свежими.

Графен не только тончайший, но и самый прочный в мире материал. Ученые из Колумбийского университета в Нью-Йорке убедились в этом, поместив графен над крошечными отверстиями в кристалле кремния. Затем нажатием тончайшей алмазной иглы попытались разрушить слой графена и измерили силу давления (рис.8). Оказалось, что графен в 200 раз прочнее стали. Если представить себе графеновый слой толщиной с пищевую пленку, он бы выдержал давление острия карандаша, на противоположном конце которого балансировал бы слон или автомобиль.

Рисунок 8: Давление на графен алмазной иглы