Як відомо, при перемноженні виразів зі ступенями їх показники завжди складаються (a b * a c = a b + c). Цей математичний закон був виведений Архімедом, а згодом, у VIII столітті, математик Вірасен створив таблицю цілих показників. Саме вони стали для подальшого відкриття логарифмів. Приклади використання цієї функції можна зустріти скрізь, де потрібно спростити громіздке множення на просте додавання. Якщо ви витратите 10 хвилин на прочитання цієї статті, ми вам пояснимо, що таке логарифми і як з ними працювати. Простим та доступним мовою.

Визначення в математиці

Логарифмом називається вираз наступного виду: log a b=c, тобто логарифмом будь-якого невід'ємного числа (тобто будь-якого позитивного) "b" за його основою "a" вважається ступінь "c", в яку необхідно звести основу "a", щоб у результаті отримати значення "b". Розберемо логарифм на прикладах, скажімо, є вираз log 2 8. Як знайти відповідь? Дуже просто, потрібно знайти такий ступінь, щоб з 2 до ступеня отримати 8. Зробивши в умі деякі розрахунки, отримуємо число 3! І вірно, адже 2 у ступені 3 відповідає у відповідь число 8.

Різновиди логарифмів

Для багатьох учнів і студентів ця тема видається складною і незрозумілою, проте насправді логарифми не такі страшні, головне - зрозуміти загальний їхній зміст і запам'ятати їхню власність і деякі правила. Існує три окремі види логарифмічних виразів:

  1. Натуральний логарифм ln a де основою є число Ейлера (e = 2,7).
  2. Десятковий a де підставою служить число 10.
  3. Логарифм будь-якого числа b на підставі a>1.

Кожен з них вирішується стандартним способом, що включає спрощення, скорочення і подальше приведення до одного логарифму за допомогою логарифмічних теорем. Для отримання вірних значень логарифмів слід запам'ятати їх властивості та черговість дій за їх рішення.

Правила та деякі обмеження

У математиці існує кілька правил-обмежень, які приймаються як аксіома, тобто не підлягають обговоренню та є істиною. Наприклад, не можна числа ділити на нуль, а ще неможливо отримати корінь парного ступеня з негативних чисел. Логарифми також мають свої правила, дотримуючись яких можна легко навчитися працювати навіть з довгими і ємними логарифмічними виразами:

  • основа "a" завжди має бути більшою за нуль, і при цьому не бути рівним 1, інакше вираз втратить свій зміст, адже "1" і "0" у будь-якій мірі завжди рівні своїм значенням;
  • якщо а > 0, то і а b > 0, виходить, що і "з" має бути більшим за нуль.

Як вирішувати логарифми?

Наприклад, дано завдання знайти відповідь рівняння 10 х = 100. Це дуже легко, потрібно підібрати такий ступінь, звівши до якого число десять ми отримаємо 100. Це, звичайно ж, 10 2 =100.

А тепер давайте уявимо цей вираз у вигляді логарифмічного. Отримаємо log 10 100 = 2. При вирішенні логарифмів всі дії практично сходяться до того, щоб знайти той ступінь, в який необхідно ввести основу логарифму, щоб отримати задане число.

Для безпомилкового визначення значення невідомого ступеня необхідно навчитися працювати з таблицею ступенів. Виглядає вона так:

Як бачите, деякі показники ступеня можна вгадати інтуїтивно, якщо є технічний склад розуму та знання таблиці множення. Однак для великих значеньзнадобиться таблиця ступенів. Нею можуть користуватися навіть ті, хто зовсім нічого не тямить у складних математичні теми. У лівому стовпці вказані числа (основа a), верхній ряд чисел - це значення ступеня c, яку зводиться число a. На перетині в осередках визначено значення чисел, що є відповіддю (a c = b). Візьмемо, наприклад, саму першу комірку з числом 10 і зведемо її в квадрат, отримаємо значення 100, яке вказано на перетині двох наших осередків. Все так просто і легко, що зрозуміє навіть справжнісінький гуманітарій!

Рівняння та нерівності

Виходить, що за певних умов показник ступеня – це і є логарифм. Отже, будь-які математичні чисельні вирази можна записати як логарифмічного рівності. Наприклад, 3 4 =81 можна записати у вигляді логарифму числа 81 на підставі 3, що дорівнює чотирьом (log 3 81 = 4). Для негативних ступенів правила такі самі: 2 -5 = 1/32 запишемо як логарифма, отримаємо log 2 (1/32) = -5. Однією з найцікавіших розділів математики є тема "логарифми". Приклади та розв'язання рівнянь ми розглянемо трохи нижче, відразу після вивчення їх властивостей. А зараз давайте розберемо, як виглядають нерівності та як їх відрізнити від рівнянь.

Дано вираз такого вигляду: log 2 (x-1) > 3 - воно є логарифмічною нерівністютому що невідоме значення "х" знаходиться під знаком логарифму. А також у виразі порівнюються дві величини: логарифм шуканого числа на підставі два більше, ніж число три.

Найголовніша відмінність між логарифмічними рівняннями і нерівностями полягає в тому, що рівняння з логарифмами (приклад - логарифм 2 x = √9) мають на увазі у відповіді одне або кілька певних числових значень, тоді як при розв'язанні нерівності визначаються як область допустимих значень розрив цієї функції. Як наслідок, у відповіді виходить не проста безліч окремих чисел як у відповіді рівняння, а безперервний ряд або набір чисел.

Основні теореми про логарифми

При вирішенні примітивних завдань знаходження значень логарифма, його властивості можна і не знати. Однак коли мова заходить про логарифмічні рівняння або нерівності, в першу чергу необхідно чітко розуміти і застосовувати на практиці всі основні властивості логарифмів. З прикладами рівнянь ми познайомимося пізніше, давайте спочатку розберемо кожну властивість докладніше.

  1. Основне тотожність має такий вигляд: а logaB =B. Воно застосовується лише за умови, коли а більше 0, не дорівнює одиниці і B більше за нуль.
  2. Логарифм твору можна подати в наступній формулі: log d (s 1 * s 2) = log d s 1 + log d s 2. При цьому обов'язковою умовою є: d, s 1 і s 2 > 0; а≠1. Можна навести доказ цієї формули логарифмів, з прикладами і рішенням. Нехай log a s 1 = f 1 і log a s 2 = f 2 тоді а f1 = s 1 , a f2 = s 2. Отримуємо, що s 1 *s 2 = a f1 *a f2 = a f1+f2 (властивості ступенів ), а далі за визначенням: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, що і потрібно довести.
  3. Логарифм приватного має такий вигляд: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема у вигляді формули набуває наступного вигляду: log a q b n = n/q log a b.

Називається ця формула "властивістю ступеня логарифму". Вона нагадує властивості звичайних ступенів, і не дивно, адже вся математика тримається на закономірних постулатах. Погляньмо на доказ.

Нехай log a b = t, виходить a t = b. Якщо звести обидві частини до ступеня m: a tn = b n ;

але оскільки a tn = (a q) nt / q = b n, отже log a q b n = (n * t) / t, тоді log a q b n = n / q log a b. Теорему доведено.

Приклади завдань та нерівностей

Найпоширеніші типи завдань на тему логарифмів – приклади рівнянь та нерівностей. Вони зустрічаються практично у всіх задачниках, а також входять до обов'язкової частини іспитів з математики. Для вступу до університету чи здачі вступних випробуваньз математики необхідно знати, як правильно вирішувати такі завдання.

На жаль, єдиного плану чи схеми з вирішення та визначення невідомого значення логарифму не існує, проте до кожної математичної нерівності чи логарифмічного рівняння можна застосувати певні правила. Насамперед слід з'ясувати, чи можна спростити вираз чи призвести до загального вигляду. Спрощувати довгі логарифмічні вирази можна, якщо правильно використовувати їх властивості. Давайте скоріше з ними познайомимося.

При вирішенні ж логарифмічних рівнянь, слід визначити, який перед нами вид логарифму: приклад виразу може містити натуральний логарифм або десятковий.

Ось приклади ln100, ln1026. Їх рішення зводиться до того, що потрібно визначити той ступінь, в якому основа 10 дорівнюватиме 100 і 1026 відповідно. Для рішень же натуральних логарифмівнеобхідно застосувати логарифмічні тотожності або їх властивості. Давайте на прикладах розглянемо розв'язання логарифмічних завдань різного типу.

Як використовувати формули логарифмів: з прикладами та рішеннями

Отже, розглянемо приклади використання основних теорем про логарифми.

  1. Властивість логарифму твору можна застосовувати у завданнях, де необхідно розкласти велике значеннячисла b більш прості сомножители. Наприклад, log 2 4 + log 2 128 = log 2 (4 * 128) = log 2 512. Відповідь дорівнює 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - як бачите, застосовуючи четверту властивість ступеня логарифму, вдалося вирішити на перший погляд складне і нерозв'язне вираз. Необхідно лише розкласти основу на множники і потім винести значення ступеня зі знака логарифму.

Завдання з ЄДІ

Логарифми часто зустрічаються на вступних іспитах, особливо багато логарифмічних завдань у ЄДІ (державний іспит для всіх випускників шкіл). Зазвичай ці завдання присутні у частині А (найлегша тестова частина іспиту), а й у частини З (найскладніші і об'ємні завдання). Іспит передбачає точне та ідеальне знання теми "Натуральні логарифми".

Приклади та розв'язання завдань взяті з офіційних варіантів ЄДІ. Давайте подивимося, як вирішуються такі завдання.

Дано log 2 (2x-1) = 4. Рішення:
перепишемо вираз, трохи спростивши його log 2 (2x-1) = 2 2 , за визначенням логарифму отримаємо, що 2x-1 = 2 4 , отже 2x = 17; x = 8,5.

  • Всі логарифми найкраще приводити до однієї підстави, щоб рішення не було громіздким та заплутаним.
  • Всі вирази, що стоять під знаком логарифму, вказуються як позитивні, тому при винесенні множником показника ступеня виразу, який стоїть під знаком логарифму і як його підстава, вираз, що залишається під логарифмом, має бути позитивним.

Логарифмічні вирази, розв'язання прикладів. У цій статті ми розглянемо завдання, пов'язані з вирішенням логарифмів. У завданнях порушується питання про знаходження значення висловлювання. Потрібно відзначити, що поняття логарифму використовується в багатьох завданнях і розуміти його сенс є вкрай важливим. Що стосується ЄДІ, то логарифм використовується при вирішенні рівнянь, у прикладних завданнях, а також у завданнях пов'язаних із дослідженням функцій.

Наведемо приклади для розуміння самого змісту логарифму:


Основна логарифмічна тотожність:

Властивості логарифмів, які необхідно завжди пам'ятати:

*Логарифм добутку дорівнює сумі логарифмів співмножників.

* * *

*Логарифм приватного (дробу) дорівнює різниці логарифмів співмножників.

* * *

*Логарифм ступеня дорівнює добутку показника ступеня на логарифм його заснування.

* * *

*Перехід до нової основи

* * *

Ще властивості:

* * *

Обчислення логарифмів тісно пов'язані з використанням властивостей показників ступеня.

Перерахуємо деякі з них:

Суть цієї властивості полягає в тому, що при перенесенні чисельника у знаменник і навпаки, знак показника ступеня змінюється на протилежний. Наприклад:

Наслідок з цієї властивості:

* * *

При зведенні ступеня в ступінь основа залишається незмінною, а показники перемножуються.

* * *

Як ви переконалися саме поняття логарифму нескладне. Головне те, що потрібна хороша практика, яка дає певну навичку. Вочевидь знання формул обов'язково. Якщо навичка у перетворенні елементарних логарифмів не сформована, то при вирішенні простих завданьможна легко припуститися помилки.

Практикуйтесь, вирішуйте спочатку найпростіші приклади з курсу математики, потім переходьте до складніших. У майбутньому обов'язково покажу, як вирішуються «страшні» логарифми, таких на ЄДІ не буде, але вони становлять інтерес, не пропустіть!

На цьому все! Успіху Вам!

З повагою, Олександр Крутицьких

PS: Буду вдячний Вам, якщо розповісте про сайт у соціальних мережах.

Логарифмічним рівняннямназивається рівняння, в якому невідоме (х) та вирази з ним знаходяться під знаком логарифмічної функції. Рішення логарифмічних рівнянь має на увазі, що ви вже знайомі з і .
Як розв'язувати логарифмічні рівняння?

Найпростіше рівняння має вигляд log a x = b, де a і b деякі числа, x - невідоме.
Рішенням логарифмічного рівнянняє x = a b за умови: a> 0, a 1.

Слід зазначити, що якщо х буде десь поза логарифмом, наприклад log 2 х = х-2, то таке рівняння вже називається змішаним і для його вирішення потрібен особливий підхід.

Ідеальним випадком є ​​ситуація, коли Вам трапиться рівняння, в якому під знаком логарифму знаходяться лише числа, наприклад, х+2 = log 2 2. Тут достатньо знати властивості логарифмів для його вирішення. Але такий успіх трапляється не часто, тому приготуйтеся до складніших речей.

Але спочатку, таки, почнемо з простих рівнянь. Для їх вирішення бажано мати найзагальніше уявлення про логарифм.

Вирішення найпростіших логарифмічних рівнянь

До таких відносяться рівняння типу log 2 х = log 2 16. Неозброєним оком видно, що, опустивши знак логарифму, отримаємо х = 16.

Для того, щоб вирішити більш складне логарифмічний рівняння, його зазвичай призводять до вирішення звичайного рівня алгебри або до вирішення найпростішого логарифмічного рівняння log a x = b. У найпростіших рівняннях це відбувається в один рух, тому вони і звуться найпростішими.

Вищевикористаний метод опускання логарифмів одна із основних способів розв'язання логарифмічних рівнянь і нерівностей. У математиці ця операція зветься потенціювання. Існують певні правила або обмеження для таких операцій:

  • однакові числові підстави у логарифмів
  • логарифми обох частинах рівняння перебувають вільно, тобто. без будь-яких коефіцієнтів та інших різного роду виразів.

Скажімо в рівнянні log 2 х = 2log 2 (1-х) потенціювання не застосовується - коефіцієнт 2 справа не дозволяє. У наступному прикладі log 2 x + log 2 (1 - х) = log 2 (1 + х) також не виконується одне з обмежень - зліва логарифму два. От був би один – зовсім інша річ!

Втім, прибирати логарифми можна тільки за умови, що рівняння має вигляд:

log a (...) = log a (...)

У дужках можуть бути абсолютно будь-які висловлювання, на операцію потенціювання це ніяк не впливає. І вже після ліквідації логарифмів залишиться простіше рівняння – лінійне, квадратне, показове тощо, яке Ви вже, сподіваюся, вмієте вирішувати.

Візьмемо інший приклад:

log 3 (2х-5) = log 3х

Застосовуємо потенціювання, отримуємо:

log 3 (2х-1) = 2

Виходячи з визначення логарифму, а саме, що логарифм - це число, в яке треба звести основу, щоб отримати вираз, що знаходиться під знаком логарифму, тобто. (4х-1), отримуємо:

Знову отримали гарну відповідь. Тут ми обійшлися без ліквідації логарифмів, але потенціювання можна застосувати і тут, тому що логарифм можна зробити з будь-якої кількості, причому саме такої, яку нам треба. Цей спосіб дуже допомагає при вирішенні логарифмічних рівнянь і особливо нерівностей.

Розв'яжемо наше логарифмічне рівняння log 3 (2х-1) = 2 за допомогою потенціювання:

Уявімо число 2 у вигляді логарифму, наприклад, такого log 3 9, адже 3 2 =9.

Тоді log 3 (2х-1) = log 39 і знову отримуємо все те ж рівняння 2х-1 = 9. Сподіваюся, все зрозуміло.

Ось ми й розглянули як вирішувати найпростіші логарифмічні рівняння, які насправді є дуже важливими, адже розв'язання логарифмічних рівнянь, навіть найстрашніших і закручених, у результаті завжди зводиться до вирішення найпростіших рівнянь.

У всьому, що ми робили вище, ми не брали до уваги один дуже важливий момент, що надалі матиме вирішальну роль. Річ у тім, що рішення будь-якого логарифмічного рівняння, навіть елементарного, складається з двох рівноцінних частин. Перша – це саме рішення рівняння, друга – робота з областю допустимих значень (ОДЗ). Ось саме першу частину ми й освоїли. У наведених вище прикладах ОДЗ на відповідь ніяк не впливає, тому ми її і не розглядали.

А ось візьмемо інший приклад:

log 3 (х 2 -3) = log 3 (2х)

Зовні це рівняння нічим не відрізняється від елементарного, яке успішно вирішується. Але це зовсім так. Ні, ми звичайно ж його вирішимо, але швидше за все неправильно, тому що в ньому криється невелика засідка, в яку відразу трапляються і трієчники, і відмінники. Давайте розглянемо його ближче.

Допустимо необхідно знайти корінь рівняння або суму коренів, якщо їх декілька:

log 3 (х 2 -3) = log 3 (2х)

Застосовуємо потенціювання, тут воно допустиме. У результаті отримуємо стандартне квадратне рівняння.

Знаходимо коріння рівняння:

Вийшло два корені.

Відповідь: 3 та -1

З першого погляду все вірно. Але перевіримо результат і підставимо його у вихідне рівняння.

Почнемо з х 1 = 3:

log 3 6 = log 3 6

Перевірка пройшла успішно, тепер черга х 2 = -1:

log 3 (-2) = log 3 (-2)

Так стоп! Зовні все ідеально. Один момент – логарифмів від негативних чисел не буває! А це означає, що корінь х = –1 не підходить для вирішення нашого рівняння. І тому правильна відповідь буде 3, а не 2, як ми написали.

Ось тут і зіграла свою фатальну роль ОДЗ, про яку ми забули.

Нагадаю, що під областю допустимих значень приймаються такі значення х, які є дозволеними або мають сенс для вихідного прикладу.

Без ОДЗ будь-яке рішення, навіть абсолютно правильне, будь-якого рівняння перетворюється на лотерею – 50/50.

Як же ми змогли потрапити під час вирішення, здавалося б, елементарного прикладу? А ось саме у момент потенціювання. Логарифми зникли, а з ними і всі обмеження.

Що ж тоді робити? Відмовлятися від ліквідації логарифмів? І геть-чисто відмовитися від вирішення цього рівняння?

Ні, ми просто, як справжні герої з однієї відомої пісні, ходімо в обхід!

Перед тим, як приступати до вирішення будь-якого логарифмічного рівняння, будемо записувати ОДЗ. А ось після цього можна робити з нашим рівнянням все, що душа забажає. Отримавши відповідь, ми просто викидаємо те коріння, яке не входить до нашої ОДЗ, і записуємо остаточний варіант.

Тепер визначимося, як записувати ОДЗ. Для цього уважно оглядаємо вихідне рівняння та шукаємо в ньому підозрілі місця, на кшталт поділу на х, кореня парного ступеня тощо. Поки ми не вирішили рівняння, ми не знаємо - чому одно х, але твердо знаємо, що такі х, які при підстановці дадуть поділ на 0 або вилучення квадратного кореня з негативного числа, не відповідають у відповідь. Тому такі х неприйнятні, решта ж і становитимуть ОДЗ.

Скористаємося знову тим самим рівнянням:

log 3 (х 2 -3) = log 3 (2х)

log 3 (х 2 -3) = log 3 (2х)

Як бачимо, поділу на 0 немає, квадратного коріннятакож немає, але є висловлювання з х у тілі логарифму. Тут же згадуємо, що вираз, що знаходиться всередині логарифму, завжди має бути >0. Це умова і записуємо у вигляді ОДЗ:

Тобто. ми ще нічого не вирішували, але вже записали обов'язкову умову на весь підлогарифмний вираз. Фігурна дужка означає, що ці умови мають виконуватися одночасно.

ОДЗ записано, але треба ще й вирішити отриману систему нерівностей, чим і займемося. Отримуємо відповідь x > v3. Тепер точно відомо – які їх нам не підійдуть. А далі вже приступаємо до вирішення самого логарифмічного рівняння, що ми зробили вище.

Отримавши відповіді х 1 = 3 і х 2 = -1, легко побачити, що нам підходить лише х1 = 3, його записуємо, як остаточна відповідь.

На майбутнє дуже важливо запам'ятати наступне: розв'язання будь-якого логарифмічного рівняння робимо у 2 етапи. Перший вирішуємо саме рівняння, другий вирішуємо умову ОДЗ. Обидва етапи виконуються незалежно друг від друга і тільки під час написання відповіді зіставляються, тобто. відкидаємо все зайве та записуємо правильну відповідь.

Для закріплення матеріалу рекомендуємо подивитися відео:

На відео інші приклади вирішення балки. рівнянь та відпрацювання методу інтервалів на практиці.

На це з питання, як вирішувати логарифмічні рівняння, поки все. Якщо щось за рішенням балка. рівнянь залишилося не ясним чи незрозумілим, пишіть свої запитання у коментарях.

Нотатка: Академія соціальної освіти (КСЮІ) - готова прийняти нових учнів.


Приклади:

\(\log_(2)(⁡x) = 32\)
\(\log_3⁡x=\log_3⁡9\)
\(\log_3⁡((x^2-3))=\log_3⁡((2x))\)
\(\log_(x+1)((x^2+3x-7))=2\)
\(\lg^2⁡((x+1))+10=11 \lg⁡((x+1))\)

Як вирішувати логарифмічні рівняння:

При вирішенні логарифмічного рівняння потрібно прагнути перетворити його на вигляд \(\log_a⁡(f(x))=\log_a⁡(g(x))\), після чого зробити перехід до \(f(x)=g(x) \).

\(\log_a⁡(f(x))=\log_a⁡(g(x))\) \(⇒\) \(f(x)=g(x)\).


Приклад:\(\log_2⁡(x-2)=3\)

Рішення:
\(\log_2⁡(x-2)=\log_2⁡8\)
\ (x-2 = 8 \)
\(x=10\)
Перевірка:\(10>2\) - підходить по ОДЗ
Відповідь:\(x=10\)

ОДЗ:
\(x-2>0\)
\(x>2\)

Дуже важливо!Цей перехід можна робити лише якщо:

Ви написали для вихідного рівняння, і наприкінці перевірите, чи входять знайдені в ОДЗ. Якщо це не зробити, може з'явитися зайве коріння, а значить – неправильне рішення.

Число (або вираз) ліворуч і праворуч однаково;

Логарифми ліворуч і праворуч - «чисті», тобто не повинно бути ніяких множень, поділів і т.д. - Тільки одинокі логарифми по обидва боки від знаку одно.

Наприклад:

Зауважимо, що рівняння 3 та 4 можна легко вирішити, застосувавши потрібні властивості логарифмів.

приклад . Розв'язати рівняння \(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\)

Рішення :

Напишемо ОДЗ: (x>0).

\(2\log_8⁡x=\log_8⁡2,5+\log_8⁡10\) ОДЗ: \(x>0\)

Зліва перед логарифмом стоїть коефіцієнт, справа сума логарифмів. Це нам заважає. Перенесемо двійку у показник ступеня \(x\) за якістю: \(n \log_b(⁡a)=\log_b⁡(a^n)\). Суму логарифмів представимо у вигляді одного логарифму за якістю: \(\log_a⁡b+\log_a⁡c=\log_a(⁡bc)\)

\(\log_8⁡(x^2)=\log_8⁡25\)

Ми привели рівняння до виду \(\log_a⁡(f(x))=\log_a⁡(g(x))\) і записали ОДЗ, отже можна виконати перехід до виду \(f(x)=g(x)\ ).

Вийшло. Вирішуємо його та отримуємо коріння.

\(x_1=5\) \(x_2=-5\)

Перевіряємо чи підходять коріння під ОДЗ. Для цього в (x>0) замість (x) підставляємо (5) і (-5). Цю операцію можна виконати усно.

\(5>0\), \(-5>0\)

Перша нерівність вірна, друга – ні. Значить (5) - корінь рівняння, а от (-5) - ні. Записуємо відповідь.

Відповідь : \(5\)


приклад : Розв'язати рівняння \(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\)

Рішення :

Напишемо ОДЗ: (x>0).

\(\log^2_2⁡(x)-3 \log_2(⁡x)+2=0\) ОДЗ: \(x>0\)

Типове рівняння, яке вирішується за допомогою . Замінюємо \(\log_2⁡x) на \(t\).

\(t=\log_2⁡x\)

Отримали звичайне. Шукаємо його коріння.

\(t_1=2\) \(t_2=1\)

Робимо зворотну заміну

\(\log_2(⁡x)=2\) \(\log_2(⁡x)=1\)

Перетворюємо праві частини, представляючи їх як логарифми: \(2=2 \cdot 1=2 \log_2⁡2=\log_2⁡4\) і \(1=\log_2⁡2\)

\(\log_2(⁡x)=\log_2⁡4\) \(\log_2(⁡x)=\log_2⁡2 \)

Тепер наші рівняння мають вигляд \(\log_a⁡(f(x))=\log_a⁡(g(x))\), і ми можемо виконати перехід до \(f(x)=g(x)\).

\(x_1=4\) \(x_2=2\)

Перевіряємо відповідність коренів ОДЗ. Для цього в нерівність \(x>0\) замість \(x\) підставляємо \(4\) та \(2\).

\(4>0\) \(2>0\)

Обидві нерівності вірні. Значить і (4) і (2) корені рівняння.

Відповідь : \(4\); \(2\).

основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічаються у звичайних числових виразів. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичні властивості можна вивести шляхом математичних маніпуляцій з даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів з шкільної програмита ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складне вираження з використанням низки правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи вирішення таких рівнянь, ми розширимо Ваші знання для іншої не менш важливої ​​теми — логарифмічні нерівності.

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.