Дві системи лінійних рівнянь називаються рівносильними, якщо безліч їх рішень збігається.

Елементарні перетворення системи рівнянь – це:

  1. Викреслювання із системи тривіальних рівнянь, тобто. таких, у яких всі коефіцієнти дорівнюють нулю;
  2. Розмноження будь-якого рівняння на число, відмінне від нуля;
  3. Додавання до будь-якого i-го рівняння будь-якого j-то рівняння, помноженого на будь-яке число.

Змінна x i називається вільною, якщо ця змінна не є дозволеною, а вся система рівнянь є дозволеною.

Теорема. Елементарні перетворення переводять систему рівнянь на рівносильну.

Сенс методу Гауса полягає в тому, щоб перетворити вихідну систему рівнянь та отримати рівносильну дозволену або рівносильну несумісну систему.

Отже, метод Гауса складається з наступних кроків:

  1. Розглянемо перше рівняння. Виберемо перший ненульовий коефіцієнт та розділимо все рівняння на нього. Отримаємо рівняння, яке деяка змінна x i входить з коефіцієнтом 1;
  2. Віднімемо це рівняння з решти, множачи його на такі числа, щоб коефіцієнти при змінній x i в інших рівняннях обнулилися. Отримаємо систему, дозволену щодо змінної x i і рівносильну вихідної;
  3. Якщо виникають тривіальні рівняння (рідко, але буває; наприклад, 0 = 0), викреслюємо їх із системи. У результаті рівнянь стає одне менше;
  4. Повторюємо попередні кроки трохи більше n разів, де n - число рівнянь у системі. Щоразу вибираємо для «обробки» нову змінну. Якщо виникають суперечливі рівняння (наприклад, 0 = 8), то система несумісна.

В результаті через кілька кроків отримаємо або дозволену систему (можливо, з вільними змінними) або несумісну. Дозволені системи розпадаються на два випадки:

  1. Число змінних дорівнює числу рівнянь. Виходить, система визначена;
  2. Число змінних більше числарівнянь. Збираємо всі вільні змінні праворуч – отримуємо формули для дозволених змінних. Ці формули так і записуються у відповідь.

От і все! Система лінійних рівнянь вирішена! Це досить простий алгоритм і для його освоєння вам не обов'язково звертатися до репетитора вищої з математики. Розглянемо приклад:

Завдання. Розв'язати систему рівнянь:

Опис кроків:

  1. Віднімаємо перше рівняння з другого та третього - отримаємо дозволену змінну x 1;
  2. Помножуємо друге рівняння на (−1), а третє рівняння ділимо на (−3) – отримаємо два рівняння, у яких змінна x 2 входить із коефіцієнтом 1;
  3. Додаємо друге рівняння до першого, та якщо з третього - віднімаємо. Отримаємо дозволену змінну x 2;
  4. Нарешті, віднімаємо третє рівняння з першого - отримуємо дозволену змінну x 3;
  5. Отримали дозволену систему, записуємо відповідь.

Загальне рішення спільної системи лінійних рівнянь – це нова система, рівносильна вихідної, у якій всі дозволені змінні виражені через вільні.

Коли може знадобитися загальне рішення? Якщо доводиться робити менше кроків, ніж k (k – це скільки всього рівнянь). Однак причин, з яких процес закінчується на певному кроці l< k , может быть две:

  1. Після l-го кроку вийшла система, яка містить рівняння з номером (l + 1). Насправді, це добре, т.к. дозволена система все одно отримана – навіть на кілька кроків раніше.
  2. Після l -го кроку отримали рівняння, у якому всі коефіцієнти при змінних дорівнюють нулю, а вільний коефіцієнт відмінний від нуля. Це суперечливе рівняння, отже, система несовместна.

Важливо розуміти, що виникнення суперечливого рівняння методом Гаусса - це достатня підстава несумісності. При цьому зауважимо, що в результаті l кроку не може залишитися тривіальних рівнянь - всі вони викреслюються прямо в процесі.

Опис кроків:

  1. Віднімаємо перше рівняння, помножене на 4, з другого. А також додаємо перше рівняння до третього - отримаємо дозволену змінну x 1;
  2. Віднімаємо третє рівняння, помножене на 2, з другого – отримаємо суперечливе рівняння 0 = −5.

Отже, система несумісна, оскільки виявлено суперечливе рівняння.

Завдання. Дослідити спільність та знайти загальне рішення системи:


Опис кроків:

  1. Віднімаємо перше рівняння з другого (попередньо помноживши на два) і третього - отримаємо дозволену змінну x 1;
  2. Віднімаємо друге рівняння з третього. Оскільки всі коефіцієнти цих рівняннях збігаються, третє рівняння перетвориться на тривіальне. Заодно помножимо друге рівняння на (-1);
  3. Віднімаємо з першого рівняння друге - отримаємо дозволену змінну x 2 . Вся система рівнянь тепер також дозволена;
  4. Оскільки змінні x 3 і x 4 - вільні, переносимо їх праворуч, щоб висловити дозволені змінні. Це є відповідь.

Отже, система спільна та невизначена, оскільки є дві дозволені змінні (x 1 та x 2) та дві вільні (x 3 та x 4).

Одним із універсальних та ефективних методів вирішення лінійних алгебраїчних систем є метод Гауса , що перебуває у послідовному виключенні невідомих.

Нагадаємо, дві системи називаються еквівалентними (рівносильними), якщо множини їх рішень збігаються. Іншими словами, системи еквівалентні, якщо кожне рішення однієї з них є рішенням іншої та навпаки. Еквівалентні системи виходять при елементарні перетворення рівнянь системи:

    множення обох частин рівняння на число відмінне від нуля;

    додавання до деякого рівняння відповідних частин іншого рівняння, помножених на число відмінне від нуля;

    перестановка двох рівнянь.

Нехай дана система рівнянь

Процес розв'язання цієї системи методом Гауса складається з двох етапів. На першому етапі (прямий хід) система за допомогою елементарних перетворень наводиться до ступінчастому , або трикутному виду, але в другому етапі (зворотний хід) йде послідовне, починаючи з останнього за номером змінного, визначення невідомих з отриманої ступінчастої системи.

Припустимо, що коефіцієнт цієї системи
, інакше в системі перший рядок можна поміняти місцями з будь-яким іншим рядком так, щоб коефіцієнт при був відмінний від нуля.

Перетворимо систему, виключивши невідоме у всіх рівняннях, крім першого. Для цього помножимо обидві частини першого рівняння на і складемо почленно з другим рівнянням системи. Потім помножимо обидві частини першого рівняння на та складемо з третім рівнянням системи. Продовжуючи цей процес, отримаємо еквівалентну систему

Тут
– нові значення коефіцієнтів та вільних членів, які виходять після першого кроку.

Аналогічно, вважаючи головним елементом
, виключимо невідоме із усіх рівнянь системи, крім першого та другого. Продовжимо цей процес, поки це можливо, в результаті отримаємо східчасту систему

,

де ,
,…,- Головні елементи системи
.

Якщо в процесі приведення системи до ступінчастого виду з'являться рівняння, тобто рівності виду
, їх відкидають, тому що їм задовольняють будь-які набори чисел
. Якщо ж при
з'явиться рівняння виду, яке має рішень, це свідчить про несумісності системи.

При зворотному ході із останнього рівняння перетвореної ступінчастої системи виражається перше невідоме через решту невідомих
, які називають вільними . Потім вираз змінної з останнього рівняння системи підставляється в передостаннє рівняння та з нього виражається змінна
. Аналогічним чином послідовно визначаються змінні
. Змінні
, виражені через вільні змінні, називаються базисними (Залежними). В результаті виходить загальне розв'язання системи лінійних рівнянь.

Щоб знайти приватне рішення системи, вільним невідомим
у загальному рішенні надаються довільні значення та обчислюються значення змінних
.

Технічно зручніше піддавати елементарним перетворенням не самі рівняння системи, а розширену матрицю системи

.

Метод Гауса - універсальний метод, який дозволяє вирішувати не лише квадратні, а й прямокутні системи, у яких кількість невідомих
не дорівнює числу рівнянь
.

Перевага цього методу полягає також у тому, що в процесі вирішення ми одночасно досліджуємо систему на спільність, оскільки, навівши розширену матрицю
до ступінчастого вигляду, легко визначити ранги матриці та розширеної матриці
та застосувати теорему Кронекера - Капеллі .

Приклад 2.1Методом Гауса вирішити систему

Рішення. Число рівнянь
та кількість невідомих
.

Складемо розширену матрицю системи, приписавши праворуч від матриці коефіцієнтів стовпець вільних членів .

Наведемо матрицю до трикутного вигляду; для цього отримуватимемо «0» нижче елементів, що стоять на головній діагоналі за допомогою елементарних перетворень.

Щоб отримати «0» у другій позиції першого стовпця, помножимо перший рядок на (-1) і додамо до другого рядка.

Це перетворення запишемо числом (-1) проти першого рядка і позначимо стрілкою, що йде від першого рядка до другого рядка.

Для отримання «0» у третій позиції першого стовпця, помножимо перший рядок на (-3) і додамо до третього рядка; покажемо цю дію за допомогою стрілки, що йде від першого рядка до третього.




.

В отриманій матриці, записаній другий у ланцюжку матриць, отримаємо «0» у другому стовпці третьої позиції. Для цього помножили другий рядок на (-4) і додали до третього. В отриманій матриці другий рядок помножимо на (-1), а третій - розділимо на (-8). Всі елементи цієї матриці, що лежать нижче за діагональні елементи - нулі.

Так як , система є спільною та певною.

Відповідна останній матриці система рівнянь має трикутний вигляд:

З останнього (третього) рівняння
. Підставимо у друге рівняння та отримаємо
.

Підставимо
і
у перше рівняння, знайдемо


.

Нехай дана система , ∆≠0. (1)
Метод Гауса- Це метод послідовного виключення невідомих.

Суть методу Гаусса полягає у перетворенні (1) до системи з трикутною матрицею , з якої потім послідовно (зворотним ходом) виходять значення всіх невідомих. Розглянемо одну з обчислювальних схем. Ця схема називається схемою єдиного поділу. Отже, розглянемо цю схему. Нехай a 11 ≠0 (провідний елемент) розділимо на a 11 перше рівняння. Отримаємо
(2)
Користуючись рівнянням (2), легко виключити невідомі x 1 з інших рівнянь системи (для цього достатньо від кожного рівняння відняти рівняння (2) попередньо помножене на відповідний коефіцієнт при x 1), тобто на першому кроці отримаємо
.
Іншими словами, на 1 кроці кожен елемент наступних рядків, починаючи з другого, дорівнює різниці між вихідним елементом та твором його «проекції» на перший стовпець і перший (перетворений) рядок.
Після цього залишивши перше рівняння у спокої, над іншими рівняннями системи, отриманої першому кроці, зробимо аналогічне перетворення: виберемо з них рівняння з провідним елементом і виключимо з його допомогою з інших рівнянь x 2 (крок 2).
Після n кроків замість (1) отримаємо рівносильну систему
(3)
Отже, першому етапі ми отримаємо трикутну систему (3). Цей етап називається прямим ходом.
На другому етапі (зворотний хід) ми знаходимо послідовно (3) значення x n , x n -1 , …, x 1 .
Позначимо отримане рішення за x0. Тоді різницю ε=b-A·x 0 називається нев'язкою.
Якщо ε=0, то знайдене рішення x0 є вірним.

Обчислення за методом Гауса виконуються у два етапи:

  1. Перший етап називається прямим перебігом методу. У першому етапі вихідну систему перетворять до трикутному виду.
  2. Другий етап називається зворотним ходом. З другого краю етапі вирішують трикутну систему, еквівалентну вихідної.
Коефіцієнти а 11 22 … називають провідними елементами.
На кожному кроці передбачалося, що провідний елемент відрізняється від нуля. Якщо це не так, то як ведучий можна використовувати будь-який інший елемент, як би переставивши рівняння системи.

Призначення методу Гауса

Метод Гауса призначений на вирішення систем лінійних рівнянь. Належить до прямих методів рішення.

Види методу Гауса

  1. Класичний метод Гауса;
  2. Модифікації методу Гауса. Однією з модифікацій методу Гаус є схема з вибором головного елемента. Особливістю методу Гауса з вибором головного елемента є така перестановка рівнянь, щоб на k-му кроці провідним елементом виявлявся найбільший за модулем елемент k-го стовпця.
  3. Метод Жордано-Гаусса;
Відмінність методу Жордано-Гаусса від класичного методу Гаусаполягає у застосуванні правила прямокутника, коли напрямок пошуку рішення відбувається по головній діагоналі (перетворення до одиничної матриці). У методі Гауса напрямок пошуку рішення відбувається по стовпцях (перетворення до системи з трикутною матрицею).
Проілюструємо відмінність методу Жордано-Гауссавід методу Гауса на прикладах.

Приклад рішення методом Гауса
Вирішимо систему:

Для зручності обчислень поміняємо рядки місцями:

Помножимо 2-й рядок на (2). Додамо 3-й рядок до 2-го

Помножимо 2-й рядок на (-1). Додамо 2-ий рядок до 1-го

З першого рядка виражаємо x 3:
З 2-го рядка виражаємо x 2:
З 3-го рядка виражаємо x 1:

Приклад рішення методом Жордано-Гаусса
Цю ж СЛАУ вирішимо методом Жордано-Гаусса.

Послідовно вибиратимемо роздільну здатність елемент РЕ, який лежить на головній діагоналі матриці.
Роздільний елемент дорівнює (1).



НЕ = СЕ - (А * В) / РЕ
РЕ - роздільна здатність елемент (1), А і В - елементи матриці, що утворюють прямокутник з елементами СТЭ і РЕ.
Подаємо розрахунок кожного елемента у вигляді таблиці:

x 1 x 2 x 3 B
1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


Роздільний елемент дорівнює (3).
На місці дозволяє елемента отримуємо 1, а в самому стовпці записуємо нулі.
Решта елементів матриці, включаючи елементи стовпця B, визначаються за правилом прямокутника.
Для цього вибираємо чотири числа, які розташовані у вершинах прямокутника і завжди включають роздільну здатність елемент РЕ.
x 1 x 2 x 3 B
0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


Роздільний елемент дорівнює (-4).
На місці дозволяє елемента отримуємо 1, а в самому стовпці записуємо нулі.
Решта елементів матриці, включаючи елементи стовпця B, визначаються за правилом прямокутника.
Для цього вибираємо чотири числа, які розташовані у вершинах прямокутника і завжди включають роздільну здатність елемент РЕ.
Подаємо розрахунок кожного елемента у вигляді таблиці:
x 1 x 2 x 3 B
0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


Відповідь: x 1 = 1, x 2 = 1, x 3 = 1

Реалізація методу Гауса

Метод Гауса реалізований багатьма мовами програмування, зокрема: Pascal, C++, php, Delphi, і навіть є реалізація методу Гауса в онлайн режимі .

Використання методу Гауса

Застосування методу Гауса в теорії ігор

Теоретично ігор при знайденні максимальної оптимальної стратегії гравця складається система рівнянь, яка вирішується шляхом Гаусса.

Застосування методу Гаусса під час вирішення диференціальних рівнянь

Для пошуку приватного рішення диференціального рівняння спочатку знаходять похідні відповідного ступеня для записаного приватного рішення (y=f(A,B,C,D)), які підставляють вихідне рівняння. Далі, щоб знайти змінні A, B, C, Dскладається система рівнянь, що вирішується методом Гауса.

Застосування методу Жордано-Гаусса у лінійному програмуванні

У лінійному програмуванні, зокрема в симплекс-методі перетворення симплексной таблиці кожної ітерації використовується правило прямокутника, у якому використовується метод Жордано-Гаусса.

Сьогодні розуміємо метод Гауса для вирішення систем лінійних алгебраїчних рівнянь. Про те, що це за системи, можна почитати у попередній статті, присвяченій рішенню тих самих СЛАУ методом Крамера. Метод Гауса не вимагає якихось специфічних знань, потрібна лише уважність та послідовність. Незважаючи на те, що з точки зору математики для його застосування вистачить і шкільної підготовки, у студентів освоєння цього методу часто спричиняє складнощі. У цій статті спробуємо звести їх нанівець!

Метод Гауса

М етод Гауса- найбільш універсальний метод вирішення СЛАУ (за винятком ну вже дуже великих систем). На відміну від розглянутого раніше, він підходить не тільки для систем, що мають єдине рішення, але і для систем, у яких рішень безліч. Тут можливі три варіанти.

  1. Система має єдине рішення (визначник головної матриці системи не дорівнює нулю);
  2. Система має безліч рішень;
  3. Рішень немає, система несумісна.

Отже, ми маємо систему (нехай у неї буде одне рішення), і ми збираємося вирішувати її методом Гауса. Як це працює?

Метод Гауса складається з двох етапів – прямого та зворотного.

Прямий хід методу Гауса

Спочатку запишемо розширену матрицю системи. Для цього до головної матриці додаємо стовпець вільних членів.

Вся суть методу Гауса полягає в тому, щоб шляхом елементарних перетворень привести цю матрицю до ступінчастого (або як ще кажуть трикутного) виду. У такому вигляді під (або над) головною діагоналлю матриці мають бути одні нулі.

Що можна робити?

  1. Можна переставляти рядки матриці місцями;
  2. Якщо в матриці є однакові (або пропорційні) рядки, можна видалити їх усі, крім одного;
  3. Можна множити чи ділити рядок на будь-яке число (крім нуля);
  4. Нульові рядки видаляються;
  5. Можна додавати до рядка рядок, помножений на число, відмінне від нуля.

Зворотний хід методу Гауса

Після того як ми перетворимо систему таким чином, одна невідома Xn стає відома, і можна в зворотному порядку знайти всі невідомі, що залишилися, підставляючи вже відомі ікси в рівняння системи, аж до першого.

Коли інтернет завжди під рукою, можна вирішити систему рівнянь методом Гауса онлайн.Достатньо лише вбити в онлайн-калькулятор коефіцієнти. Але погодьтеся, набагато приємніше усвідомлювати, що приклад вирішено не комп'ютерною програмою, а вашим власним мозком.

Приклад розв'язання системи рівнянь методом Гаус

А тепер – приклад, щоб усе стало наочно та зрозуміло. Нехай дана система лінійних рівнянь і потрібно вирішити її методом Гауса:

Спочатку запишемо розширену матрицю:

Тепер займемося перетвореннями. Пам'ятаємо, що нам потрібно досягти трикутного виду матриці. Помножимо 1-ий рядок на (3). Помножимо 2-й рядок на (-1). Додамо 2-й рядок до 1-го і отримаємо:

Потім помножимо 3-й рядок на (-1). Додамо 3-й рядок до 2-го:

Помножимо 1-ий рядок на (6). Помножимо 2-й рядок на (13). Додамо 2-ий рядок до 1-го:

Вуаля – система приведена до відповідного виду. Залишилось знайти невідомі:

Система в цьому прикладі має єдине рішення. Вирішення систем з безліччю рішень ми розглянемо в окремій статті. Можливо, спочатку Ви не знатимете, з чого почати перетворення матриці, але після відповідної практики наб'єте руку і клацатимете СЛАУ методом Гауса як горішки. А якщо Ви раптом зіткнетеся зі СЛАУ, яка виявиться надто міцним горішком, звертайтеся до наших авторів! Ви можете залишивши заявку в Заочнику. Разом ми вирішимо будь-яке завдання!

Нехай задана система лінійних рівнянь алгебри, яку необхідно вирішити (знайти такі значення невідомих хi, що звертають кожне рівняння системи в рівність).

Ми знаємо, що система лінійних рівнянь алгебри може:

1) Не мати рішень (бути несумісний).
2) Мати безліч рішень.
3) Мати єдине рішення.

Як ми пам'ятаємо, правило Крамера і матричний метод непридатні в тих випадках, коли система має безліч рішень або несумісна. Метод Гаусанайбільш потужний та універсальний інструмент для знаходження вирішення будь-якої системи лінійних рівнянь, Котрий у кожному випадкуприведе нас до відповіді! Сам алгоритм методу у всіх трьох випадках працює однаково. Якщо в методах Крамера та матричному необхідні знання визначників, то для застосування методу Гауса необхідно знання лише арифметичних дій, що робить його доступним навіть для школярів початкових класів.

Перетворення розширеної матриці ( це матриця системи - матриця, складена тільки з коефіцієнтів при невідомих, плюс стовпець вільних членів)системи лінійних рівнянь алгебри в методі Гауса:

1) з трокиматриці можна, можливо переставлятимісцями.

2) якщо в матриці з'явилися (або є) пропорційні (як окремий випадок– однакові) рядки, то слід вилучитиз матриці всі ці рядки крім однієї.

3) якщо в матриці в ході перетворень з'явився нульовий рядок, то його слід також вилучити.

4) рядок матриці можна помножити (розділити)на будь-яке число, відмінне від нуля.

5) до рядка матриці можна додати інший рядок, помножений на число, відмінне від нуля.

У методі Гауса елементарні перетворення не змінюють розв'язання системи рівнянь.

Метод Гауса складається з двох етапів:

  1. «Прямий хід» - за допомогою елементарних перетворень привести розширену матрицю системи лінійних рівнянь алгебри до «трикутного» ступінчастого вигляду: елементи розширеної матриці, розташовані нижче головної діагоналі, рівні нулю (хід «згори-вниз»). Наприклад, до такого виду:

Для цього виконаємо такі дії:

1) Нехай ми розглядаємо перше рівняння системи лінійних рівнянь алгебри і коефіцієнт при х 1 дорівнює К. Друге, третє і т.д. рівняння перетворимо наступним чином: кожне рівняння (коефіцієнти при невідомих, включаючи вільні члени) ділимо на коефіцієнт при невідомому х 1 , що стоїть у кожному рівнянні, і множимо на К. Після цього з другого рівняння (коефіцієнти при невідомих і вільні члени) віднімає Отримуємо при х 1 у другому рівнянні коефіцієнт 0. З третього перетвореного рівняння віднімаємо перше рівняння, так доки всі рівняння, крім першого, при невідомому х 1 не будуть мати коефіцієнт 0.

2) Переходимо до наступного рівняння. Нехай це буде друге рівняння і коефіцієнт при х 2 дорівнює М. З усіма «нижчими» рівняннями робимо так, як описано вище. Таким чином, під невідомої х 2 у всіх рівняннях будуть нулі.

3) Переходимо до наступного рівняння і так до тих пір, поки не залишиться одна остання невідома та перетворений вільний член.

  1. « Зворотній хід» методу Гаусса - отримання рішення системи лінійних рівнянь алгебри (хід «знизу-вгору»). З останнього «нижнього» рівняння отримуємо одне перше рішення – невідоме х n . Для цього розв'язуємо елементарне рівняння А * х n = В. У прикладі, наведеному вище, х 3 = 4. Підставляємо знайдене значення «верхнє» наступне рівняння і вирішуємо його щодо наступної невідомої. Наприклад, х 2 – 4 = 1, тобто. х 2 = 5. І так доти, доки не знайдемо всі невідомі.

приклад.

Розв'яжемо систему лінійних рівнянь методом Гауса, як радять деякі автори:

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Дивимося на ліву верхню сходинку. Там у нас має бути одиниця. Проблема у тому, що у першому стовпці одиниць немає взагалі, тому перестановкою рядків нічого не вирішити. У разі одиницю треба організувати з допомогою елементарного перетворення. Зазвичай це можна зробити кількома способами. Вчинимо так:
1 крок . До першого рядка додаємо другий рядок, помножений на -1. Тобто подумки помножили другий рядок на -1 і виконали додавання першого і другого рядка, при цьому другий рядок у нас не змінилася.

Тепер зліва вгорі "мінус один", що нас цілком влаштує. Хто хоче отримати +1, може виконати додаткову дію: помножити перший рядок на –1 (змінити знак).

2 крок . До другого рядка додали перший рядок, помножений на 5. До третього рядка додали перший рядок, помножений на 3.

3 крок . Перший рядок помножили на -1, в принципі це для краси. У третьому рядку також змінили знак і переставили її на друге місце, таким чином, на другому сходинці у нас з'явилася потрібна одиниця.

4 крок . До третього рядка додали другий рядок, помножений на 2.

5 крок . Третій рядок поділили на 3.

Ознакою, яка свідчить про помилку в обчисленнях (рідше – про друкарську помилку), є «поганий» нижній рядок. Тобто, якби в нас унизу вийшло щось на зразок (0 0 11 |23) , і, відповідно, 11x 3 = 23, x 3 = 23/11, то з великою часткою ймовірності можна стверджувати, що припущена помилка в ході елементарних перетворень.

Виконуємо зворотний хід, в оформленні прикладів часто не переписують саму систему, а рівняння "беруть прямо з наведеної матриці". Зворотний хід, нагадую, працює «знизу нагору». У цьому прикладі вийшов подарунок:

x 3 = 1
x 2 = 3
x 1 + x 2 – x 3 = 1, отже x 1 + 3 – 1 = 1, x 1 = –1

Відповідь: x 1 = -1, x 2 = 3, x 3 = 1

Вирішимо цю саму систему за запропонованим алгоритмом. Отримуємо

4 2 –1 1
5 3 –2 2
3 2 –3 0

Розділимо друге рівняння на 5, а третє – на 3. Отримаємо:

4 2 –1 1
1 0.6 –0.4 0.4
1 0.66 –1 0

Помножимо друге та третє рівняння на 4, отримаємо:

4 2 –1 1
4 2,4 –1.6 1.6
4 2.64 –4 0

Віднімемо з другого та третього рівнянь перше рівняння, маємо:

4 2 –1 1
0 0.4 –0.6 0.6
0 0.64 –3 –1

Розділимо третє рівняння на 0,64:

4 2 –1 1
0 0.4 –0.6 0.6
0 1 –4.6875 –1.5625

Помножимо третє рівняння на 0,4

4 2 –1 1
0 0.4 –0.6 0.6
0 0.4 –1.875 –0.625

Віднімемо з третього рівняння друге, отримаємо «ступінчасту» розширену матрицю:

4 2 –1 1
0 0.4 –0.6 0.6
0 0 –1.275 –1.225

Таким чином, так як у процесі обчислень накопичувалася похибка, отримуємо х3 = 0,96 або приблизно 1.

х 2 = 3 та х 1 = -1.

Вирішуючи таким чином, Ви ніколи не заплутаєтеся у обчисленнях і не зважаючи на похибки обчислень, отримаєте результат.

Такий спосіб вирішення системи лінійних рівнянь алгебри легко програмуємо і не враховує специфічні особливості коефіцієнтів при невідомих, адже на практиці (в економічних і технічних розрахунках) доводиться мати справу саме з нецілими коефіцієнтами.

Бажаю успіхів! До зустрічі на заняттях! Репетитор Дмитро Айстраханов.

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.