Методи (правила) розкриття нерівностей з модулями полягають у послідовному розкритті модулів, при цьому використовують інтервали знаковості підмодульних функцій. У кінцевому варіанті отримують кілька нерівностей з яких знаходять інтервали або проміжки, які задовольняють умові завдання.

Перейдемо до вирішення поширених практично прикладів.

Лінійні нерівності з модулями

Під лінійними розуміємо рівняння, у яких змінна входить у рівняння лінійно.

Приклад 1. Знайти розв'язання нерівності

Рішення:
З умови завдання випливає, що модулі перетворюються на нуль при x=-1 та x=-2. Ці точки розбивають числову вісь на інтервали

У кожному з цих інтервалів розв'яжемо задану нерівність. Для цього насамперед складаємо графічні малюнки областей знаковості підмодульних функцій. Їх зображують як областей зі знаками кожної з функцій


або інтервали зі знаками всіх функцій.

На першому інтервалі розкриваємо модулі

Примножуємо обидві частини на мінус одиницю, причому знак у нерівності зміниться на протилежний. Якщо Вам до цього правила важко звикнути, то можете перенести кожну частину за знак, щоб позбутися мінуса. В кінцевому варіанті Ви отримаєте

Перетином множини x>-3 з областю, на якій вирішували рівняння, буде інтервал (-3;-2) . Для тих, кому легше шукати рішення, графічно можете малювати перетин цих областей.

Загальні перетин областей і будуть вирішені. При суворому нерівності краю не включають. При суворому перевіряють підстановкою.

На другому інтервалі отримаємо

Перетином буде інтервал (-2; -5/3). Графічно рішення матиме вигляд

На третьому інтервалі отримаємо

Ця умова не дає рішень на потрібній області.

Оскільки два знайдені рішення (-3;-2) та (-2;-5/3) межують точкою x=-2, то перевіряємо і її.

Таким чином, точка x=-2 є рішенням. Загальне рішення з огляду на це буде виглядати (-3;5/3).

Приклад 2. Визначити розв'язання нерівності
|x-2|-|x-3|>=|x-4|

Рішення:
Нулями підмодульних функцій будуть точки x=2, x=3, x=4. При значеннях аргументів менше цих точок підмодульні функції негативні, а за великих – позитивні.

Крапки розбивають дійсну вісь на чотири інтервали. Розкриваємо модулі відповідно до інтервалів знаковості і вирішуємо нерівності.

1) На першому інтервалі всі підмодульні функції є негативними, тому при розкритті модулів змінюємо знак на протилежний.

Перетином знайдених значень x з інтервалом, що розглядається, буде безліч точок

2) На проміжку між точками x=2 та x=3 перша підмодульна функція позитивна, друга та третя – негативні. Розкриваючи модулі, отримаємо

нерівність, що у перетині з інтервалом, у якому вирішуємо, дає одне рішення – x=3.

3) На проміжку між точками x=3 та x=4 перша та друга підмодульні функції позитивні, а третя – негативна. На основі цього отримаємо

Ця умова показує, що цілий проміжок задовольнятиме нерівність із модулями.

4) За значень x>4 всі функції знакопозитивні. При розкритті модулів їх знак не змінюється.

Знайдена умова у перетині з інтервалом дає таку безліч рішень

Оскільки нерівність вирішено усім інтервалах, то залишається знайти загальне всіх знайдених значень x. Рішенням будуть два інтервали

У цьому приклад вирішено.

Приклад 3. Визначити розв'язання нерівності
||x-1|-5|>3-2x

Рішення:
Маємо нерівність із модулем від модуля. Такі нерівності розкривають у міру вкладеності модулів, починаючи з тих, що розміщені глибше.

Підмодульна функція x-1 перетворюється на нуль у точці x=1 . При менших значеннях за 1 вона негативна і позитивна x>1 . На основі цього розкриваємо внутрішній модуль та розглядаємо нерівність на кожному з інтервалів.

Спочатку розглянемо інтервал від мінус нескінченності до одиниці


Підмодульна функція дорівнює нулю в точці x = -4. При менших значеннях вона знакопозитивна, за більших – негативна. Розкриємо модуль для x<-4:

У перетині з областю, на якій розглядаємо, отримаємо безліч рішень

Наступним кроком розкриваємо модуль на інтервалі (-4; 1)

З урахуванням області розкриття модуля отримаємо інтервал рішень

ЗАПАМ'ЯТАЙТЕ: якщо Ви отримали в подібних нерівностях з модулями два інтервали, що межують загальною точкою, то вона, як правило, також є рішенням.

Для цього варто лише провести перевірку.

У разі підставляємо точку x=-4.

Отже, x=-4 є рішенням.
Розкриємо внутрішній модуль для x>1

Підмодульна функція негативна для x<6.
Розкриваючи модуль отримаємо

Ця умова в перерізі з інтервалом (1; 6) дає порожню множину рішень.

Для x>6 отримаємо нерівність

Також вирішуючи отримали порожню множину.
Враховуючи все вище викладене, єдиним розв'язком нерівності з модулями буде наступний інтервал.

Нерівності з модулями, що містять квадратні рівняння

Приклад 4. Визначити розв'язання нерівності
|x^2+3x|>=2-x^2

Рішення:
Підмодульна функція перетворюється на нуль у точках x=0, x=-3. Простий підстановкою мінус одиниці

встановлюємо, що вона менша за нуль на інтервалі (-3;0) і позитивна за його межами.
Розкриємо модуль у областях де підмодульна функція позитивна

Залишилося визначити області, де квадратна функція є позитивною. Для цього визначаємо корені квадратного рівняння

Для зручності підставляємо точку x=0, яка належить до інтервалу (-2;1/2). Функція негативна в цьому інтервалі, значить рішенням будуть наступні множини

Тут дужками позначені краї областей з рішеннями, це зроблено свідомо з огляду на таке правило.

ЗАПАМ'ЯТАЙТЕ: Якщо нерівність із модулями, або проста нерівність є суворою, то краї знайдених областей не є рішеннями, якщо ж нерівності несуворі () то краї є розв'язками (позначають квадратними дужками).

Це правило використовує багато викладачів: якщо задана сувора нерівність, а Ви при обчисленнях запишете у вирішенні квадратну дужку ([,]) – вони автоматично вважають це за неправильну відповідь. Також при тестуванні, якщо задана несувора нерівність із модулями, то серед рішень шукайте області з квадратними дужками.

На інтервалі (-3;0) розкриваючи модуль змінюємо знак функції на протилежний

Враховуючи область розкриття нерівності, рішення матиме вигляд

Разом із попередньою областю це дасть два напівінтервали

Приклад 5. Знайти розв'язання нерівності
9x^2-|x-3|>=9x-2

Рішення:
Задано не сувору нерівність, підмодульна функція якої дорівнює нулю у точці x = 3. При менших значеннях вона негативна, за більших – позитивна. Розкриваємо модуль на інтервалі x<3.

Знаходимо дискримінант рівняння

і коріння

Підставляючи точку нуль, з'ясовуємо, що у проміжку [-1/9;1] квадратична функція негативна, отже проміжок є рішенням. Далі розкриваємо модуль при x>3

Модулем числаназивається саме це число, якщо воно не негативне, або це число з протилежним знаком, якщо воно негативне.

Наприклад, модулем числа 6 є 6, модулем числа -6 також є 6.

Тобто, під модулем числа розуміється абсолютна величина, абсолютне значення цього числа без урахування його знака.

Позначається так: |6|, | х|, |а| і т.д.

(Докладніше - у розділі «Модуль числа»).

Рівняння із модулем.

Приклад 1 . Розв'язати рівняння|10 х - 5| = 15.

Рішення.

Відповідно до правила, рівняння рівносильне сукупності двох рівнянь:

10х - 5 = 15
10х - 5 = -15

Вирішуємо:

10х = 15 + 5 = 20
10х = -15 + 5 = -10

х = 20: 10
х = -10: 10

х = 2
х = -1

Відповідь: х 1 = 2, х 2 = -1.

Приклад 2 . Розв'язати рівняння|2 х + 1| = х + 2.

Рішення.

Оскільки модуль – число невід'ємне, то х+ 2 ≥ 0. Відповідно:

х ≥ -2.

Складаємо два рівняння:

2х + 1 = х + 2
2х + 1 = -(х + 2)

Вирішуємо:

2х + 1 = х + 2
2х + 1 = -х - 2

2х - х = 2 - 1
2х + х = -2 - 1

х = 1
х = -1

Обидва числа більші за -2. Отже, обидва є корінням рівняння.

Відповідь: х 1 = -1, х 2 = 1.

Приклад 3 . Розв'язати рівняння

|х + 3| - 1
————— = 4
х - 1

Рішення.

Рівняння має сенс, якщо знаменник не дорівнює нулю - отже, якщо х≠ 1. Врахуємо цю умову. Наша перша дія проста - не просто звільняємося від дробу, а переробимо її так, щоб отримати модуль у чистому вигляді:

|х+ 3 | - 1 = 4 · ( х - 1),

|х + 3| - 1 = 4х - 4,

|х + 3| = 4х - 4 + 1,

|х + 3| = 4х - 3.

Тепер у нас у лівій частині рівняння лише вираз під модулем. Йдемо далі.
Модуль числа є невід'ємним числом - тобто він повинен бути більше нуля або дорівнює нулю. Відповідно, вирішуємо нерівність:

4х - 3 ≥ 0

4х ≥ 3

х ≥ 3/4

Таким чином, у нас з'явилася друга умова: корінь рівняння має бути не меншим за 3/4.

Відповідно до правила, складаємо сукупність двох рівнянь та вирішуємо їх:

х + 3 = 4х - 3
х + 3 = -(4х - 3)

х + 3 = 4х - 3
х + 3 = -4х + 3

х - 4х = -3 - 3
х + 4х = 3 - 3

х = 2
х = 0

Ми отримали дві відповіді. Перевіримо, чи є вони корінням вихідного рівняння.

У нас було дві умови: корінь рівняння не може дорівнювати 1, і він повинен бути не менше 3/4. Тобто х ≠ 1, х≥ 3/4. Обом цим умовам відповідає лише одна з двох отриманих відповідей - число 2. Значить, тільки воно і є коренем вихідного рівняння.

Відповідь: х = 2.

Нерівності із модулем.

Приклад 1 . Вирішити нерівність| х - 3| < 4

Рішення.

Правило модуля свідчить:

|а| = а, якщо а ≥ 0.

|а| = -а, якщо а < 0.

Модуль може мати і негативне, і негативне число. Отже, ми повинні розглянути обидва випадки: х- 3 ≥ 0 та х - 3 < 0.

1) При х- 3 ≥ 0 наша вихідна нерівність залишається як є, тільки без знаку модуля:
х - 3 < 4.

2) При х - 3 < 0 в исходном неравенстве надо поставить знак минус перед всем подмодульным выражением:

-(х - 3) < 4.

Розкривши дужки, отримуємо:

-х + 3 < 4.

Таким чином, від цих двох умов ми дійшли об'єднання двох систем нерівностей:

х - 3 ≥ 0
х - 3 < 4

х - 3 < 0
-х + 3 < 4

Вирішимо їх:

х ≥ 3
х < 7

х < 3
х > -1

Отже, у нас у відповіді об'єднання двох множин:

3 ≤ х < 7 U -1 < х < 3.

Визначаємо найменше та найбільше значення. Це -1 та 7. При цьому хбільше -1 але менше 7.
Крім того, х≥ 3. Отже, розв'язанням нерівності є вся множина чисел від -1 до 7, крім цих крайніх чисел.

Відповідь: -1 < х < 7.

Або: х ∈ (-1; 7).

Доповнення.

1) Є більш простий і короткий спосіб вирішення нашої нерівності – графічний. Для цього треба намалювати горизонтальну вісь (рис.1).

Вираз | х - 3| < 4 означает, что расстояние от точки хдо точки 3 менше чотирьох одиниць. Відзначаємо на осі число 3 і відраховуємо вліво та вправо від нього 4 поділу. Зліва ми прийдемо до точки -1, праворуч - до точки 7. Таким чином, точки хми просто побачили, не рахуючи їх.

При цьому, згідно з умовою нерівності, самі -1 ​​і 7 не включені до множини рішень. Таким чином, отримуємо відповідь:

1 < х < 7.

2) Але є ще одне рішення, яке простіше навіть графічного методу. Для цього нашу нерівність треба представити у такому вигляді:

4 < х - 3 < 4.

Адже так воно і є за правилом модуля. Невід'ємне число 4 та аналогічне від'ємне число -4 є межами розв'язання нерівності.

4 + 3 < х < 4 + 3

1 < х < 7.

Приклад 2 . Вирішити нерівність| х - 2| ≥ 5

Рішення.

Цей приклад суттєво відрізняється від попереднього. Ліва частина більша за 5 або дорівнює 5. З геометричної точки зору, розв'язанням нерівності є всі числа, які від точки 2 відстоять на відстані 5 одиниць і більше (рис.2). За графіком видно, що це всі числа, які менші або рівні -3 і більше або рівні 7. Отже, ми вже отримали відповідь.

Відповідь: -3 ≥ х ≥ 7.

Принагідно вирішимо цю ж нерівність способом перестановки вільного члена вліво і вправо з протилежним знаком:

5 ≥ х - 2 ≥ 5

5 + 2 ≥ х ≥ 5 + 2

Відповідь та сама: -3 ≥ х ≥ 7.

Або: х ∈ [-3; 7]

Приклад вирішено.

Приклад 3 . Вирішити нерівність 6 х 2 - | х| - 2 ≤ 0

Рішення.

Число хможе бути і позитивним числом, і негативним, і банкрутом. Тому нам треба врахувати усі три обставини. Як ви знаєте, вони враховуються у двох нерівностях: х≥ 0 та х < 0. При х≥ 0 ми просто переписуємо нашу вихідну нерівність як є тільки без знаку модуля:

6х 2 - х - 2 ≤ 0.

Тепер про другий випадок: якщо х < 0. Модулем отрицательного числа является это же число с противоположным знаком. То есть пишем число под модулем с обратным знаком и опять же освобождаемся от знака модуля:

6х 2 - (-х) - 2 ≤ 0.

Розкриваємо дужки:

6х 2 + х - 2 ≤ 0.

Таким чином, ми отримали дві системи рівнянь:

6х 2 - х - 2 ≤ 0
х ≥ 0

6х 2 + х - 2 ≤ 0
х < 0

Потрібно вирішити нерівності в системах - а це означає, треба знайти коріння двох квадратних рівнянь. Для цього прирівняємо ліві частини нерівностей до нуля.

Почнемо з першого:

6х 2 - х - 2 = 0.

Як вирішується квадратне рівняння – див. розділ «Квадратне рівняння». Ми ж одразу назвемо відповідь:

х 1 = -1/2, х 2 = 2/3.

З першої системи нерівностей ми отримуємо, що рішенням вихідної нерівності є безліч чисел від -1/2 до 2/3. Пишемо об'єднання рішень при х ≥ 0:
[-1/2; 2/3].

Тепер розв'яжемо друге квадратне рівняння:

6х 2 + х - 2 = 0.

Його коріння:

х 1 = -2/3, х 2 = 1/2.

Висновок: при х < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Об'єднаємо дві відповіді та отримаємо підсумкову відповідь: рішенням є вся безліч чисел від -2/3 до 2/3, включаючи і ці крайні числа.

Відповідь: -2/3 ≤ х ≤ 2/3.

Або: х ∈ [-2/3; 2/3].

Існує кілька способів розв'язання нерівностей, що містять модуль. Розглянемо деякі з них.

1) Вирішення нерівності за допомогою геометричної властивості модуля.

Нагадаю, що така геометрична властивість модуля: модуль числа x – це відстань від початку координат до точки з координатою x.

У ході розв'язання нерівностей цим способом може виникнути 2 випадки:

1. |x| ≤ b,

І нерівність із модулем явно зводиться до системи двох нерівностей. Тут знак може бути і строгим, у цьому випадку крапки на картинці будуть «виколоти».

2. |x| ≥ b,тоді картинка рішення виглядає так:

І нерівність із модулем явно зводиться до сукупності двох нерівностей. Тут знак може бути і строгим, у цьому випадку крапки на картинці будуть «виколоти».

приклад 1.

Розв'язати нерівність |4 – |x|| 3.

Рішення.

Ця нерівність дорівнює наступній сукупності:

U [-1;1] U

приклад 2.

Розв'язати нерівність ||x+2| - 3 | 2.

Рішення.

Ця нерівність дорівнює наступній системі.

(|x + 2| – 3 ≥ -2
(|x + 2| – 3 ≤ 2,
(|x + 2| ≥ 1
(|x + 2| ≤ 5).

Вирішимо окремо першу нерівність системи. Воно еквівалентне наступній сукупності:

U [-1; 3].

2) Вирішення нерівностей, використовуючи визначення модуля.

Нагадаю для початку визначення модуля.

|a| = a, якщо a 0 та |a| = -a, якщо a< 0.

Наприклад, |34| = 34, |-21 | = -(-21) = 21.

приклад 1.

Вирішити нерівність 3 | x - 1 | x+3.

Рішення.

Використовуючи визначення модуля, отримаємо дві системи:

(x – 1 ≥ 0
(3(x – 1) ≤ x + 3

(x – 1< 0
(-3(x – 1) ≤ x + 3).

Вирішуючи першу другу системи окремо, отримаємо:

(x ≥ 1
(x ≤ 3,

(x< 1
(x≥0.

Рішенням вихідної нерівності будуть всі рішення першої системи та всі рішення другої системи.

Відповідь: x €.

3) Вирішення нерівностей шляхом спорудження квадрат.

приклад 1.

Вирішити нерівність | x 2 - 1 |< | x 2 – x + 1|.

Рішення.

Зведемо обидві частини нерівності у квадрат. Зауважу, що зводити обидві частини нерівності у квадрат можна лише у тому випадку, коли вони обидві позитивні. В даному випадку у нас і ліворуч і праворуч стоять модулі, тому ми можемо це зробити.

(|x 2 – 1|) 2< (|x 2 – x + 1|) 2 .

Тепер скористаємось наступною властивістю модуля: (|x|) 2 = x 2 .

(x 2 – 1) 2< (x 2 – x + 1) 2 ,

(x 2 – 1) 2 – (x 2 – x + 1) 2< 0.

(x 2 - 1 - x 2 + x - 1) (x 2 - 1 + x 2 - x + 1)< 0,

(x - 2) (2x 2 - x)< 0,

x(x – 2)(2x – 1)< 0.

Вирішуємо методом інтервалів.

Відповідь: x € (-∞; 0) U (1/2; 2)

4) Вирішення нерівностей шляхом заміни змінних.

приклад.

Вирішити нерівність (2x + 3) 2 - | 2x + 3 | 30.

Рішення.

Зауважимо, що (2x + 3) 2 = (| 2x + 3|) 2 . Тоді отримаємо нерівність

(|2x + 3|) 2 - | 2x + 3| ≤ 30.

Зробимо заміну y = | 2x + 3 |.

Перепишемо нашу нерівність з урахуванням заміни.

y 2 – y ≤ 30,

y 2 – y – 30 ≤ 0.

Розкладемо квадратний тричлен, що стоїть зліва на множники.

y1 = (1 + 11)/2,

y2 = (1 - 11) / 2,

(y - 6) (y + 5) ≤ 0.

Вирішимо методом інтервалів та отримаємо:

Повернемося до заміни:

5 ≤ |2x + 3| ≤ 6.

Ця подвійна нерівність рівносильна системі нерівностей:

(|2x + 3| ≤ 6
(|2x + 3|?-5.

Вирішимо кожну з нерівностей окремо.

Перше рівносильне системі

(2x + 3 ≤ 6
(2x + 3 ≥ -6).

Вирішимо її.

(x ≤ 1.5
(x≥-4.5.

Друге нерівність очевидно виконується всім x, оскільки модуль визначення кількості позитивне. Оскільки рішення системи – це всі x, які задовольняють одночасно і першій і другій нерівності системи, то рішенням вихідної системи буде вирішення її першої подвійної нерівності (адже друге правильне для всіх x).

Відповідь: x € [-4,5; 1,5].

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Сьогодні, друзі, не буде жодних соплів та сантиментів. Замість них я без зайвих питань відправлю вас у бій з одним із найгрізніших супротивників у курсі алгебри 8-9 класу.

Так, ви все правильно зрозуміли: йдеться про нерівності з модулем. Ми розглянемо чотири основні прийоми, за допомогою яких ви навчитеся вирішувати близько 90% таких завдань. А що з рештою 10%? Що ж, про них ми поговоримо в окремому уроці.

Однак перед тим, як розбирати якісь там прийоми, хотілося б нагадати два факти, які потрібно знати. Інакше ви ризикуєте взагалі зрозуміти матеріал сьогоднішнього уроку.

Що вже треба знати

Очевидність як би натякає, що для вирішення нерівностей з модулем необхідно знати дві речі:

  1. Як вирішуються нерівності;
  2. Що таке модуль?

Почнемо із другого пункту.

Визначення модуля

Тут усе просто. Є два визначення: алгебраїчне та графічне. Для початку - алгебраїчне:

Визначення. Модуль числа $x$ - це або це число, якщо воно неотрицательно, або число, йому протилежне, якщо вихідний $x$ - все-таки негативний.

Записується це так:

\[\left| x \right|=\left\( \begin(align) & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\end(align) \right.\]

Говорячи простою мовою, модуль це «число без мінуса». І саме в цій двоїстості (десь із вихідним числом нічого не треба робити, а десь доведеться прибрати якийсь там мінус) і полягає вся складність для учнів-початківців.

Є ще геометричне визначення. Його теж корисно знати, але звертатися до нього ми будемо лише у складних і якихось спеціальних випадках, де геометричний підхід зручніший за алгебраїчний (спойлер: не сьогодні).

Визначення. Нехай на числовій прямій відзначено точку $a$. Тоді модулем $ \ left | x-a \right|$ називається відстань від точки $x$ до точки $a$ на цій прямій.

Якщо накреслити картинку, то вийде щось на кшталт цього:


Графічне визначення модуля

Так чи інакше, з визначення модуля відразу випливає його ключова властивість: модуль числа завжди є величиною невід'ємною. Цей факт буде червоною ниткою йти через всю нашу сьогоднішню розповідь.

Вирішення нерівностей. Метод інтервалів

Тепер розберемося з нерівністю. Їх існує безліч, але наше завдання зараз — уміти вирішувати хоча б найпростіші з них. Ті, які зводяться до лінійним нерівностям, і навіть методу інтервалів.

На цю тему у мене є два великі уроки (між іншим, дуже, дуже корисних - рекомендую вивчити):

  1. Метод інтервалів для нерівностей (особливо перегляньте відео);
  2. Дробно-раціональні нерівності - дуже об'ємний урок, але після нього у вас взагалі не залишиться будь-яких питань.

Якщо ви все це знаєте, якщо фраза «перейдемо від нерівності до рівняння» не викликає у вас невиразне бажання убитися об стіну, то ви готові: ласкаво просимо до пекла до основної теми уроку.:)

1. Нерівності виду «Модуль менший за функцію»

Це одне з найпоширеніших завдань з модулями. Потрібно вирішити нерівність виду:

\[\left| f \right| \lt g\]

У ролі функцій $f$ і $g$ може бути будь-що, але зазвичай це многочлены. Приклади таких нерівностей:

\[\begin(align) & \left| 2x+3 \right| \lt x+7; \\ & \left| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| ((x)^(2))-2\left| x \right|-3 \right| \lt 2. \\\end(align)\]

Всі вони вирішуються буквально в один рядок за схемою:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\( \begin(align) & f \lt g, \\ & f \gt -g \\\end(align) \right.\right)\]

Неважко помітити, що позбавляємося модуля, але натомість отримуємо подвійну нерівність (або, що теж саме, систему з двох нерівностей). Проте цей перехід враховує абсолютно все можливі проблеми: якщо число під модулем позитивне, метод працює; якщо негативно - все одно працює; і навіть за самої неадекватної функції дома $f$ чи $g$ метод все одно спрацює.

Звичайно, виникає питання: а простіше не можна? На жаль, не можна. У цьому вся фішка модуля.

Втім, вистачить філософствувати. Давайте вирішимо кілька завдань:

Завдання. Розв'яжіть нерівність:

\[\left| 2x+3 \right| \lt x+7\]

Рішення. Отже, перед нами класична нерівність виду "модуль менший" - навіть перетворювати нічого. Працюємо за алгоритмом:

\[\begin(align) & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\end(align)\]

Не поспішайте розкривати дужки, перед якими стоїть «мінус»: цілком можливо, що через поспіх ви припуститеся образливої ​​помилки.

\[-x-7 \lt 2x+3 \lt x+7\]

\[\left\( \begin(align) & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end(align) \right.\]

\[\left\( \begin(align) & -3x \lt 10 \\ & x \lt 4 \\ \end(align) \right.\]

\[\left\( \begin(align) & x \gt -\frac(10)(3) \\ & x \lt 4 \\ \end(align) \right.\]

Завдання звелося до двох елементарних нерівностей. Зазначимо їх вирішення на паралельних числових прямих:

Перетин множин

Перетином цих множин і буде відповідь.

Відповідь: $x\in \left(-\frac(10)(3);4 \right)$

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Рішення. Це завдання вже трохи складніше. Для початку усамітнимо модуль, перенісши друге доданок вправо:

\[\left| ((x)^(2))+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами знову нерівність виду «модуль менший», тому позбавляємося модуля за вже відомим алгоритмом:

\[-\left(-3\left(x+1 \right) \right) \lt ((x)^(2))+2x-3 \lt -3\left(x+1 \right)\]

Ось зараз увага: хтось скаже, що я трохи збоченець із усіма цими дужками. Але ще раз нагадаю, що наша ключова мета грамотно вирішити нерівність та отримати відповідь. Пізніше, коли ви досконало освоїте все, що розповідається в цьому уроці, можете самі перекручуватися як хочете: розкривати дужки, вносити мінуси і т.д.

А ми для початку просто позбудемося подвійного мінусу зліва:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right) =3\left(x+1 \right)\]

Тепер розкриємо всі дужки у подвійній нерівності:

Переходимо до подвійної нерівності. На цей раз викладки будуть серйознішими:

\[\left\( \begin(align) & ((x)^(2))+2x-3 \lt -3x-3 \\ & 3x+3 \lt ((x)^(2))+2x -3 \\ \end(align) \right.\]

\[\left\( \begin(align) & ((x)^(2))+5x \lt 0 \\ & ((x)^(2))-x-6 \gt 0 \\ \end( align) \right.\]

Обидві нерівності є квадратними і вирішуються методом інтервалів (бо й кажу: якщо не знаєте, що це таке, краще поки не братися за модулі). Переходимо до рівняння у першій нерівності:

\[\begin(align) & ((x)^(2))+5x=0; \ & x \ left (x +5 \ right) = 0; \&((x)_(1))=0;((x)_(2))=-5. \\end(align)\]

Як бачимо, на виході вийшло неповне квадратне рівняння, яке вирішується елементарно. Тепер розберемося з другою нерівністю системи. Там доведеться застосувати теорему Вієта:

\[\begin(align) & ((x)^(2))-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \\& ((x)_(1))=3;((x)_(2))=-2. \\end(align)\]

Зазначаємо отримані числа на двох паралельних прямих (окрема для першої нерівності та окрема для другої):

Знову ж таки, оскільки ми вирішуємо систему нерівностей, нас цікавить перетин заштрихованих множин: $x\in \left(-5;-2 \right)$. Це є відповідь.

Відповідь: $x\in \left(-5;-2 \right)$

Думаю, після цих прикладів схема рішення гранично зрозуміла:

  1. Усамітнити модуль, перенісши всі інші доданки в протилежну частину нерівності. Таким чином, ми отримаємо нерівність виду $\left| f \right| \lt g$.
  2. Вирішити цю нерівність, позбавившись модуля за описаною вище схемою. У якийсь момент потрібно перейти від подвійної нерівності до системи з двох самостійних виразів, кожне з яких можна вирішувати окремо.
  3. Нарешті, залишиться лише перетнути рішення цих двох самостійних висловів — і все ми отримаємо остаточну відповідь.

Аналогічний алгоритм існує й у нерівностей наступного типу, коли модуль більше функції. Однак там є кілька серйозних «але». Про ці «але» ми зараз і поговоримо.

2. Нерівності виду "Модуль більше функції"

Виглядають вони так:

\[\left| f \right| \gt g\]

Схоже на попереднє? Схоже. Проте вирішуються такі завдання зовсім по-іншому. Формально схема наступна:

\[\left| f \right| \gt g\Rightarrow \left[ \begin(align) & f \gt g, \\ & f \lt -g \\end(align) \right.\]

Іншими словами, ми розглядаємо два випадки:

  1. Спочатку просто ігноруємо модуль - вирішуємо нормальну нерівність;
  2. Потім по суті розкриваємо модуль зі знаком мінус, а потім множимо обидві частини нерівності на −1, мене при цьому знак.

У цьому варіанти об'єднані квадратною дужкою, тобто. маємо сукупність двох вимог.

Зверніть увагу ще раз: перед нами не система, а сукупність, тому у відповіді безлічі об'єднуються, а не перетинаються. Це важлива відмінність від попереднього пункту!

Взагалі, з об'єднаннями та перетинами у багатьох учнів суцільна плутанина, тому давайте розберемося в цьому питанні раз і назавжди:

  • "∪" - це знак об'єднання. По суті, це стилізована літера «U», яка прийшла до нас із англійської мовиє абревіатурою від «Union», тобто. "Об'єднання".
  • "∩" - це знак перетину. Ця хрень звідки не прийшла, а просто виникла як протиставлення до «∪».

Щоб ще простіше було запам'ятати, просто прималюйте до цих знаків ніжки, щоб вийшли келихи (ось тільки не треба зараз звинувачувати мене у пропаганді наркоманії та алкоголізму: якщо ви всерйоз вивчаєте цей урок, то ви вже наркоман):

Різниця між перетином та об'єднанням множин

У перекладі російською це таке: об'єднання (сукупність) включає у собі елементи з обох множин, тому не менше кожного їх; а ось перетин (система) включає лише ті елементи, які одночасно знаходяться і в першій множині, і в другій. Тому перетин множин ніколи не буває більше множин-вихідників.

Так стало зрозуміліше? От і відмінно. Переходимо до практики.

Завдання. Розв'яжіть нерівність:

\[\left| 3x+1 \right| \gt 5-4x\]

Рішення. Діємо за схемою:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin(align) & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\end(align) \ right.\]

Вирішуємо кожну нерівність сукупності:

\[\left[ \begin(align) & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end(align) \right.\]

\[\left[ \begin(align) & 7x \gt 4 \\ & -x \lt -6 \\ \end(align) \right.\]

\[\left[ \begin(align) & x \gt 4/7\ \\ & x \gt 6 \\ \end(align) \right.\]

Відзначаємо кожну отриману множину на числовій прямій, а потім об'єднуємо їх:

Об'єднання множин

Цілком очевидно, що відповіддю буде $x\in \left(\frac(4)(7);+\infty \right)$

Відповідь: $x\in \left(\frac(4)(7);+\infty \right)$

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+2x-3 \right| \gt x\]

Рішення. Ну що? Та нічого — все те саме. Переходимо від нерівності з модулем до сукупності двох нерівностей:

\[\left| ((x)^(2))+2x-3 \right| \gt x\Rightarrow \left[ \begin(align) & ((x)^(2))+2x-3 \gt x \\ & ((x)^(2))+2x-3 \lt -x \\\end(align) \right.\]

Вирішуємо кожну нерівність. На жаль, коріння там буде не дуже.

\[\begin(align) & ((x)^(2))+2x-3 \gt x; \&((x)^(2))+x-3 \gt 0; \& D=1+12=13; \ & x = \ frac (-1 \ pm \ sqrt (13)) (2). \\end(align)\]

У другій нерівності теж трохи дичини:

\[\begin(align) & ((x)^(2))+2x-3 \lt -x; \& ((x)^(2))+3x-3 \lt 0; \& D=9+12=21; \ & x = \ frac (-3 \ pm \ sqrt (21)) (2). \\end(align)\]

Тепер треба відзначити ці числа на двох осях - по одній осі для кожної нерівності. Проте відзначати крапки потрібно у правильному порядку: чим більше число, тим далі зсув точку вправо.

І ось тут на нас чекає підстава. Якщо з числами $\frac(-3-\sqrt(21))(2) \lt \frac(-1-\sqrt(13))(2)$ все ясно (доданки в чисельнику першого дробу менше доданків у чисельнику другого) , Тому сума теж менше), з числами $\frac(-3-\sqrt(13))(2) \lt \frac(-1+\sqrt(21))(2)$ теж не виникне труднощів (позитивне число свідомо більше негативного), то з останньою парочкою все не так однозначно. Що більше: $\frac(-3+\sqrt(21))(2)$ або $\frac(-1+\sqrt(13))(2)$? Від відповіді це питання залежатиме розстановка точок на числових прямих і, власне, відповідь.

Тому давайте порівнювати:

\[\begin(matrix) \frac(-1+\sqrt(13))(2)\vee \frac(-3+\sqrt(21))(2) \\ -1+\sqrt(13)\ vee -3+\sqrt(21) \\ 2+\sqrt(13)\vee \sqrt(21) \\\end(matrix)\]

Ми усамітнили корінь, отримали негативні числа з обох сторін нерівності, тому маємо право звести обидві сторони в квадрат:

\[\begin(matrix) ((\left(2+\sqrt(13) \right))^(2))\vee ((\left(\sqrt(21) \right))^(2)) \ \ 4+4\sqrt(13)+13\vee 21 \\ 4\sqrt(13)\vee 3 \\\end(matrix)\]

Думаю, тут і їжу зрозуміло, що $4\sqrt(13) \gt 3$, тому $\frac(-1+\sqrt(13))(2) \gt \frac(-3+\sqrt(21)) (2)$, остаточно точки на осях будуть розставлені ось так:

Випадок некрасивого коріння

Нагадаю, ми вирішуємо сукупність, тому у відповідь піде об'єднання, а не перетин заштрихованих множин.

Відповідь: $x\in \left(-\infty ;\frac(-3+\sqrt(21))(2) \right)\bigcup \left(\frac(-1+\sqrt(13))(2 );+\infty \right)$

Як бачите, наша схема чудово працює як для простих задач, так і для жорстких. Єдине «слабке місце» у такому підході — треба грамотно порівнювати ірраціональні числа (і повірте: це не лише коріння). Але питанням порівняння буде присвячено окремий (і дуже серйозний урок). А ми йдемо далі.

3. Нерівності з невід'ємними «хвостами»

От ми й дісталися найцікавішого. Це нерівності виду:

\[\left| f \right| \gt \left| g \right|\]

Взагалі кажучи, алгоритм, про який ми зараз поговоримо, вірний лише для модуля. Він працює у всіх нерівностях, де ліворуч і праворуч стоять гарантовано невід'ємні вирази:

Що робити із цими завданнями? Просто пам'ятайте:

У нерівностях з невід'ємними «хвостами» можна зводити обидві частини у будь-яку натуральну міру. Жодних додаткових обмежень при цьому не виникне.

Насамперед нас цікавитиме зведення в квадрат — він спалює модулі та коріння:

\[\begin(align) & ((\left(\left| f \right| \right))^(2))=((f)^(2)); \&((\left(\sqrt(f) \right))^(2))=f. \\end(align)\]

Ось тільки не треба плутати це із вилученням кореня з квадрата:

\[\sqrt(((f)^(2)))=\left| f \right|\ne f\]

Безліч помилок було допущено в той момент, коли учень забував ставити модуль! Але це зовсім інша історія (це ніби ірраціональні рівняння), тому не зараз у це заглиблюватимемося. Давайте краще вирішимо кілька завдань:

Завдання. Розв'яжіть нерівність:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Рішення. Відразу зауважимо дві речі:

  1. Це не сувора нерівність. Крапки на числовій прямій будуть виколоті.
  2. Обидві сторони нерівності явно невід'ємні (ця властивість модуля: $ \ left | f \ left (x \ right) \ right | \ ge 0 $).

Отже, можемо звести обидві частини нерівності в квадрат, щоб позбавитися модуля і вирішувати завдання звичайним методом інтервалів:

\[\begin(align) & ((\left(\left| x+2 \right| \right))^(2))\ge ((\left(\left| 1-2x \right| \right) ) ^ (2)); \\ & ((\left(x+2 \right))^(2))\ge ((\left(2x-1 \right))^(2)). \\end(align)\]

На останньому етапі я трохи схитрував: змінив послідовність доданків, користуючись парністю модуля (насправді, помножив вираз $1-2x$ на -1).

\[\begin(align) & ((\left(2x-1 \right))^(2))-((\left(x+2 \right))^(2))\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \) right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\\end(align)\]

Вирішуємо методом інтервалів. Переходимо від нерівності до рівняння:

\[\begin(align) & \left(x-3 \right)\left(3x+1 \right)=0; \&((x)_(1))=3;((x)_(2))=-\frac(1)(3). \\end(align)\]

Відзначаємо знайдене коріння на числовій прямій. Ще раз: усі крапки зафарбовані, оскільки вихідна нерівність — не сувора!

Звільнення від знаку модуля

Нагадаю для особливо наполегливих: знаки ми беремо з останньої нерівності, яка була записана перед переходом до рівняння. І зафарбовуємо області, які потрібні в тій же нерівності. У нашому випадку це $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну от і все. Завдання вирішено.

Відповідь: $x\in \left[ -\frac(1)(3);3 \right]$.

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+x+1 \right|\le \left| ((x)^(2))+3x+4 \right|\]

Рішення. Робимо все те саме. Я не коментуватиму — просто подивіться на послідовність дій.

Зводимо у квадрат:

\[\begin(align) & ((\left(\left| ((x)^(2))+x+1 \right| \right))^(2))\le ((\left(\left) ((x)^(2))+3x+4 \right| \right))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))\le ((\left(((x)^(2))+3x+4 \right))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))-((\left(((x)^(2))+3x+4 \ right))^(2))\le 0; \\ & \left(((x)^(2))+x+1-((x)^(2))-3x-4 \right)\times \\ & \times \left(((x) ^(2))+x+1+((x)^(2))+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)\le 0. \\\end(align)\]

Метод інтервалів:

\[\begin(align) & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)=0 \\ & -2x-3=0\ Rightarrow x = -1,5; \\ & 2((x)^(2))+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing. \\end(align)\]

Всього один корінь на числовій прямій:

Відповідь - цілий інтервал

Відповідь: $x\in \left[ -1,5;+\infty \right)$.

Невелике зауваження щодо останнього завдання. Як точно помітив один мій учень, обидва підмодульні вирази в даній нерівності явно позитивні, тому знак модуля можна без шкоди для здоров'я опустити.

Але це вже зовсім інший рівень роздумів та інший підхід його умовно можна назвати методом наслідків. Про нього в окремому уроці. А зараз перейдемо до фінальної частини сьогоднішнього уроку та розглянемо універсальний алгоритм, який працює завжди. Навіть тоді, коли всі попередні підходи виявилися безсилими.

4. Метод перебору варіантів

А якщо всі ці прийоми не допоможуть? Якщо нерівність не зводиться невід'ємним хвостам, якщо усамітнити модуль не виходить, якщо взагалі біль-сумно?

Тоді на сцену виходить важка артилерія всієї математики — метод перебору. Стосовно нерівностей із модулем виглядає він так:

  1. Виписати всі підмодульні вирази та прирівняти їх до нуля;
  2. Розв'язати отримані рівняння та відзначити знайдені корені на одній числовій прямій;
  3. Пряма розіб'ється на кілька ділянок, усередині якого кожен модуль має фіксований знак і тому однозначно розкривається;
  4. Вирішити нерівність на кожній такій ділянці (можна окремо розглянути корені-кордони, отримані в пункті 2 для надійності). Результати об'єднати - це і буде відповідь.

Ну як? Слабко? Легко! Тільки довго. Подивимося практично:

Завдання. Розв'яжіть нерівність:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac(3)(2)\]

Рішення. Ця хрень не зводиться до нерівностей виду $ \ left | f \right| \lt g$, $\left| f \right| \gt g$ або $\left| f \right| \lt \left| g \right|$, тому діємо напролом.

Виписуємо підмодульні вирази, прирівнюємо їх до нуля і знаходимо коріння:

\[\begin(align) & x+2=0\Rightarrow x=-2; \& x-1=0\Rightarrow x=1. \\end(align)\]

Разом у нас два корені, які розбивають числову пряму на три ділянки, всередині яких кожен модуль розкривається однозначно:

Розбиття числової прямої нулями підмодульних функцій

Розглянемо кожну ділянку окремо.

1. Нехай $x \lt -2$. Тоді обидва підмодульні вирази негативні, і вихідна нерівність перепишеться так:

\[\begin(align) & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+ x-1,5 \\ & x \gt 1,5 \\end(align)\]

Здобули досить просте обмеження. Перетнемо його з вихідним припущенням, що $x \lt -2$:

\[\left\( \begin(align) & x \lt -2 \\ & x \gt 1,5 \\end(align) \right.\Rightarrow x\in \varnothing \]

Очевидно, що змінна $x$ не може одночасно бути меншою за −2, але більше за 1,5. Рішень на цій ділянці немає.

1.1. Окремо розглянемо прикордонний випадок $x=-2$. Просто підставимо це число у вихідну нерівність і перевіримо: чи воно виконується?

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|)_(x=-2) ) \\ & 0 \lt \left| -3 \right|-2-1,5; \&0\lt 3-3,5; \\ & 0 \lt -0,5\Rightarrow \varnothing. \\end(align)\]

Очевидно, що ланцюжок обчислень привів нас до невірної нерівності. Отже, вихідне нерівність теж неправильне, і $x=-2$ не входить у відповідь.

2. Нехай тепер $-2 \lt x \lt 1$. Лівий модуль вже розкриється з плюсом, але правий все ще з мінусом. Маємо:

\[\begin(align) & x+2 \lt -\left(x-1 \right)+x-1,5 \\ & x+2 \lt -x+1+x-1,5 \\& x \lt -2,5 \\end(align)\]

Знову перетинаємо з вихідною вимогою:

\[\left\( \begin(align) & x \lt -2,5 \\ & -2 \lt x \lt 1 \\end(align) \right.\Rightarrow x\in \varnothing \]

І знову порожня безліч рішень, оскільки немає таких чисел, які одночасно менші за −2,5, але більші за −2.

2.1. І знову окремий випадок: $x=1$. Підставляємо у вихідну нерівність:

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|)_(x=1)) \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \ & 3 \lt -0,5; \\ & 3 \lt -0,5\Rightarrow \varnothing. \\end(align)\]

Аналогічно попередньому «частковому випадку», число $x=1$ явно не входить у відповідь.

3. Останній шматок прямий: $x \gt 1$. Тут усі модулі розкриваються зі знаком «плюс»:

\[\begin(align) & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\ \end(align)\]

І знову перетинаємо знайдену множину з вихідним обмеженням:

\[\left\( \begin(align) & x \gt 4,5 \\ & x \gt 1 \\end(align) \right.\Rightarrow x\in \left(4,5;+\infty) \right)\]

Ну нарешті то! Ми знайшли інтервал, який буде відповіддю.

Відповідь: $x\in \left(4,5;+\infty \right)$

Насамкінець - одне зауваження, яке, можливо, убереже вас від дурних помилок при вирішенні реальних завдань:

Вирішення нерівностей з модулями зазвичай є суцільні множини на числовій прямій - інтервали та відрізки. Набагато рідше трапляються ізольовані точки. І ще рідше трапляється так, що меж рішення (кінець відрізка) збігається з межею аналізованого діапазону.

Отже, якщо кордони (ті самі «приватні випадки») не входять у відповідь, то майже, напевно, не увійдуть у відповідь і області зліва-право від цих кордонів. І навпаки: кордон увійшов у відповідь — отже, і якісь області навколо неї теж будуть відповідями.

Пам'ятайте про це, коли ви перевіряєте свої рішення.